首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
余锦银 《中学教研》2007,(10):30-31
在新教材向量部分的知识中,有一些向量不等式,例如:设 a,b 为两个非零向量,则有三角不等式:|a|-|b|≤|a±b|≤|a| |b|;数量积不等式:a·b≤|a·b|≤|a|·|b|和 |a|~2≥(a·b)~2/(|b|~2),当且仅当 a 与 b 共线(同向或反向)时,等号成立。我们可以借助这些向量不等式来解决一些具有相似结构特征的代数不等式问题,其中数量积的定义及其坐  相似文献   

2.
现行高一数学(人教版)第一册(下)第五章平面向量第119页有关向量数量积有如下一个性质(5):设a,b都是非零向量,则有|a·b|≤|a||b|(*),不等式(*)结构对称,蕴含丰富,具有广泛的应用.本文运用(*)式证明一类分式不等式,下举例说明.例1设a,b,c≥0,ab bc ca=31.求证:a2-1bc 1 b2-1ca  相似文献   

3.
构造向量巧证不等式   总被引:1,自引:0,他引:1  
向量是高中教材的新增内容 ,作为现代数学重要标志之一的向量引入中学数学后 ,给中学数学带来无限生机。笔者在阅读文 [1 ]发现 ,该文所举的各个例子 ,均可通过构造向量 ,利用向量不等式 :m·n≤ |m|·|n|( )轻松获证 ,显示了向量在证明不等式时的独特威力。例 1 已知a、b、c∈R ,且a +2b +3c=6,求证a2+2b2 +3c2 ≥ 6。证明 构造向量 :m =(a ,2b ,3c) ,n =( 1 ,2 ,3 ) ,由向量不等式 ( )得6=a +2b +3c≤a2 +2b2 +3c2 · 1 +2 +3 ,∴a2 +2b2 +3c2 ≥ 6。例 2 已知 :a、b∈R+ ,且a +b =1 ,求证(a +1a) 2 +(b +1b) 2 ≥2 52 。证明 构造…  相似文献   

4.
不等式的证明是中学数学的一个难点,分式不等式的证明更为困难.本文提供了利用均值不等式配对证明一类分式不等式的思路. 一、如果不等式是形如sum form n to i=1 Ai2/Bi≥M的形式,且Ai,Bi(i=1,2,…,n),M均为正数,则可对Ai2/Bi配上Bi·P,成对利用均值不等式和不等式的基本性质证明. 例1 设a,b,c∈R+,求证:a2/(b+c)+b2/(c+a)+c2/(a+b)≥(a+b+c)/2. 证明:由a2/(b+c)+(b+c)/4≥a,b2/(c+a)+(c+a)/4≥b,c2/(a+b)+(a+b)/4≥c.上面三式相加得求证不等式.  相似文献   

5.
新教材中新增了向量的内容,其中两个向量的数量积有一个性质:a·b=|a|·|b|cosθ(其中θ为向量a与b的夹角),则|a·b|=||a|·|b|cosθ|,又-1≤cosθ≤1,则易得到以下推论:(1)a·b≤|a|·|b|;(2)|a·b|≤|a|·|b|;(3)当a与b同向时,a·b=|a|·|b|;当a与b反向时,a·b=-|a|·|b|;⑷当a与b共线时,|a·b|=|a|·|b|.下面例析以上推论在解不等式问题中的应用.一、证明不等式例1已知a、b∈R ,a b=1,求证:2a 1 2b 1≤22.证明:设m=(1,1),n=(2a 1,2b 1),则m·n=2a 1 2b 1,|m|=2,|n|=2a 1 2b 1=2.由性质m·n≤|m|·|n|,得2a 1 2b 1≤22.例2已知x y z=1,求…  相似文献   

6.
向量的数量积是两个向量间的一种乘法运算,数量积隐含着一种不等量的关系,即|a·b|≤|a|·|b|,而这种不等量的关系可用来证明不等式.解决此类问题的基本方法是构造法,因此解题的关键是从所证不等式的结构和特点出发,巧妙构造向量.  相似文献   

7.
一类三元分式不等式及其证明   总被引:1,自引:1,他引:0  
本文旨在介绍几个新颖有趣的三元分式不等式,并给出它们的巧妙证明.例1已知a,b,c为满足abc=1的正数,求证:1/(2 a) 1/(2 b) 1/(2 c)≤1.证明:因bc ca ab≥3(abc)~(1/3)=3,故1-(1/(2 a) 1/(2 b) 1/(2 c)) =1-(bc ca ab 4(a b c) 12)/((2 a)(2 b)(2 c))  相似文献   

8.
1.概念法例1 设a,b,c是任意的非零平面向量,且相互不共线,则①(a·b)c-(c·a)b=0;②|a|-|b|<|a-b|;③(b·c)a-(c·a)b不与c垂直;  相似文献   

9.
题目 已知→a,→b是平面内两个互相垂直的单位向量,若向量→c满足(→a-→c)·(→b-→c)=0,则|→c|的最大值是() A.1 B.2 C.√2 D.√2/2 错解:因→a ⊥→b,所以→a·→b=0,由(→a-→c)·(→b-→c)=0得→a·→b-→c·(→a+→b)+|→c| 2 =0,即得|→c|2=→c·(→a+→b),两端平方得|→c| 4=[→c·(→a+→b)]2,|→c|4=(→c)2·(→a+→b)2,即|→c|4=(→c)2[(→a)2+(→b)2+2→a· →b],即|→c| 4=|→c|2[1+1+0],即|→c| 4=2|→c|2,|→c|2 =2,即|→c|=√2,所以,|→c|为定值,最大值和最小值都是√2,故正确选项为C.  相似文献   

10.
向量中有重要不等式|a|·|b|≥|a·b|,如果我们把a和b都看成n维向量,它们的坐标表示是a=(a_1,a_2,…,a_n),b=(b_1,b_2,…,b_n),定义向量a、b的数量积a·b=a_1b_1 a_2b_2 … a_nb_n,|a|=(a_1~2 a_2~2 … a_n~2)~(1/2),|b|=(b_1~2 b_2~2 … b_n~2)~(1/2).下面谈谈利用|a|·|b|≥|a·b|来解决等式条件下的最值问题.  相似文献   

11.
题目如图所示,平面四边形ABCD中AB=a,BC=b,CD=c,DA=d,且a·b=·c=c·d=d·a,试确定四边形ABCD的形状.错解:因为a b c d=0,所以a b=-(c d).∴(a b)2=(c d)2,即|a|2 2a·b |b|2=|c|2 2c·d |d|2.由a·b=c·d,得|a|2 |b|2=|c|2 |d|2.①同理|a|2 |d|2=|b|2 |c|2.②由①-②得|b|2=|d  相似文献   

12.
正对于各级数学竞赛中一类分式型不等式,将其分母换元,然后用新元素表示各个量,将复杂问题转化为已知的或简单的问题进行解决,达到事半功倍的目的,现举例说明,以飨读者.例1已知a、b、c∈R+,求证:a/(b+c)+b/(c+a)+c/(a+b)≥3/2(第26届莫斯科数学奥林匹克试题)  相似文献   

13.
文[1]给出了一类分式不等式的递推证明,笔者通过研究发现,构造向量,利用向量的数量积性质解决此类问题更为方便、快捷.定理设A、B为两个非零向量,则|A|~2≥(A·B)~2/|B|~2(*).  相似文献   

14.
从许多参考书上,可以看到如下一个重要不等式: 若a,b,c∈R~ ,则 2/(a b) 2/(b c) 2/(c a)≥9/(a b c)(1) 此不等式呈轮换对称形式,排列整齐,而且  相似文献   

15.
第1点运算定义型()必做1定义平面向量的一种运算:ab=|a|·|b| sin〈a,b〉,则下列命题:1ab=ba;2λ(ab)=(λa)b;3(a+b)c=(ac)+(bc);4若a=(x1,y1),b=(x2,y2),则ab=|x1y2-x2y1|.  相似文献   

16.
一、齐次化与非齐次化齐次化方法与均值不等式、柯西不等式(或与它们等价的不等式)紧密联系,常应用于给定某个等量关系的不等式问题,也可应用于分式向常数的不等转化等.不等式的齐次化常可通过非齐次化的题设条件转化得到.例1(1)已知a2+b2=c2+d2=16,求证:|ac+bd|≤16;(2)已知a,b,c>0,ab+bc+ca=1,求证:a+b+c≤1/3abc;  相似文献   

17.
通过构造函数,利用导数研究函数的性质(单调性、最值等)与图像,可以用来证明不等式或求解含参不等式中参数的取值范围等问题.一、证明不等式例,已知a,b∈R,求证:(|a b|/1 |a b|)≤(|a|/1 |a|) (|b|/1 |b|)·证明:令f(x)=(x/1 x),x≥0,则f′(x)=(1/(1 x)~2)>0.故f(x)在[0, ∞)上是单调递增函数.∵|a b|≤|a| |b|,∴f(|a b|)≤(|a| |b|).即(|a b|/1 |a b|)≤(|a| |b|/1 |a| |b|)=(|a|/1 |a| |b|) (|b|/1 |a| |b|).  相似文献   

18.
现行高中教材代数下册(必修)本在数列一章的复习参考题六中,第128页6题:已知 a~2、b~2、c~2成等差数列.求证:1/(b c)、1/(c a)、1/(a b)也是等差数列.当|a|=|b|=|c|且 a、b、c 不完全同号或都等于0时,数列 a~2、b~2、c~2为等差数列,首项为a~2,公差为0,满足题目条件.而这时,b c、c a、a b 中至少有两个都等于0,从而1/(b c)、1/(c a)、1/(a b)中至少有两个没有意义,当然不能  相似文献   

19.
平面向量是解决代数、三角、几何等问题的现代化工具,因而倍受高考命题专家的青睐,已成为近四年高考新课程卷的重要考查内容.为帮助考生了解高考题型变化和发展趋势,下面介绍平面向量试题的考点及其求解思路与方法.考点1 向量概念和性质正误判断例1 (2000年新课程卷高考题)设a、b、c是任意的非零平面向量,且相互不共线,则1(a.b)c-(c.a)b=0→;2|a|-|b|<|a-b|;3(b.c)a-(c.a)b不与c垂直;4(3a+2b).(3a-2b)=9|a|2-4|b|2中,其中真命题的有(  )(A)12. (B)23. (C)34. (D)24.解析:在实数与向量积和向量内积的两种运算中,满足乘法交换律和乘…  相似文献   

20.
176 5年 ,著名数学家 Euler建立了关于三角形外接圆半径 R与内切圆半径 r的一个重要不等式 [1 ]R≥ 2 r. ( 1 )文 [2 ]给出上述不等式一个十分漂亮的加强形式R≥ 2 r+ 18R[( a- b) 2 + ( b- c) 2 + ( c- a) 2 ],( 2 )其中 a,b,c为三角形的三边长 .本文进一步加强 Euler不等式并给出其逆向形式 .定理  a,b,c,R,r分别为△ ABC的三边长、外接圆半径、内切圆半径 ,则11 6 R( | a- b| + | b- c| + | c- a| ) 2 + 2 r≤ R≤ 2 r+ 11 6 r( | a- b| + | b- c| + | c- a| ) 2 .( 3)证明  ( 3)式中左边不等式等价于R- 2 r- 11 6 R( | a- b| + …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号