首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一题多解     
笔者在中考复习中曾布置了这样一道初一几何题,并要求同学们想一想能否用多种方法去求解. 题目如图,已知,AB∥DE,∠ABC=140°,∠DEC=160°,求∠BCE.  相似文献   

2.
一个几何命题经过细致的考察、变异、拓广 ,常可导出许多新的命题 ,用这种方法学习、研究几何问题 ,有助于洞察几何问题的本质 ,收到举一反三、触类旁通的效果 ,对培养我们良好的学风和思维方法有重要作风 .下面举例说明 .原题 如图 1 ,在△ABC中 ,AB=AC ,∠A=2 0° ,点D在AC上 ,∠CBD =6 0° ,点E在AB上 ,∠BCE =50°,求∠BDE的度数 .(答案 :3 0°)1 构造逆命题原题中抹去线段AE、AD ,延长DE和CB使之相交 .变题 1 在△ABC中 ,∠B =70°,∠C=80°,点D在AC上 ,∠CBD =4 0°,点E在AB上 ,∠BCE =3 0° ,求∠BDE的度数 …  相似文献   

3.
<正>一、问题呈现题目如图1所示,在△ABC中,AB=6,AC=3,∠BAC=120°,∠BAC的平分线交BC于点D,求AD的长.二、解法新探及思考解法1如图1,过点D作DE∥AB交AC于点E,则∠EDA=∠BAD.∵AD平分∠BAC,∠BAC=120°,∴∠EAD=∠BAD=∠EDA=60°,故△ADE是正三角形,DE=EA=AD.由DE∥AB,  相似文献   

4.
一、题目:人教版习题7.2第9题:如图1,AB∥CD,∠BAE=∠DCE=45°.填空:因为AB∥CD,所以∠1+45°+∠2+45°=180°.所以∠1+∠2=90°.因为∠1+∠2+∠E=180°.所以∠E=90°.图1二、对本题的思考其实这道题是:如图2,已知AB∥CD,∠BAE=∠DCE=45°.求∠E的度数.图2课本的解题方法是通过作辅助线,连接AC,利用平行线的性质定理和三角形内角和定理解题.1.平行线的性质定理:两条直线平行,同位  相似文献   

5.
三角形的角平分线在初中几何中占有重要的地位,其应用也十分广泛,为使同学们更好地掌握它,现作如下归纳. 一、角平分线+平行→等腰三角形例1 如图1,△ABC中,BE平分∠ABC,DE∥BC,求证:BD=DE 深化探究:如图2,若△ABC中,∠ABC、∠ACB的平分线交于O点,过O作DE∥BC.  相似文献   

6.
在几何问题中,巧妙地运用旋转法去解题,有时可以起到很好的效果.一、求线段的长例1如图1,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于E,S四边形ABCD=8,求DE的长.分析图中四边形是任意四边形,直接求解不容易,但是,题中有条件AB=BC,且∠ABC=90°,所以如果把ABE绕点B按逆时针  相似文献   

7.
我在一道作业题中,发现了隐藏在这道题目中的另一道题目。这里与同学们共同学习探讨。题目1 如图1,在六边形ABCDEF中,AF∥CD,AB∥ED,∠A=140°,∠B=100°,∠E=90°,求:∠C,∠D,∠F的度数。  相似文献   

8.
平行四边形是一种特殊的四边形,它具有很多独特的性质.在解答一些与线段有关的证明问题时,从构造平行四边形入手,常可化难为易.例1 如图1,△ABC中,AB=AC,E是AB上一点,F是AC延长线上一点,BE=CF,EF交BC于D.试说明DE=DF. 解 过E作EG∥AC交BC于G,连结CE,FG,则∠EGB=图1∠ACB.因为AB=AC,所以∠ABC=∠ACB=∠EGB,所以EG=BE. 因为BE=CF,所以EG=CF.又EG∥CF,所以四边形EGFC为平行四边形.因此DE=DF.例2 如图2,△ABC中,D,E分别为AB,AC的中点.说明:DE∥BC.图2解 延长DE到F,使FE=DE,连结AF,CF,CD.因为…  相似文献   

9.
巧添辅助圆     
许多几何问题,若能恰当添出辅助圆,充分利用圆的丰富性质,便能获得简捷巧妙的解法. 例1 在△ABC中,∠ABC=∠C,∠A=100°,BE是∠B平分线,求证:AE+BE=BC.图1证明 作△ABE的外接圆交BC于D,连结ED.∵∠A=100°,AB=AC,∴∠ABC=∠C=40°.又∵BE平分∠ABC,∴∠EBD=20°,AE=DE,∴AE=DE.又∵四边形ABDE为圆内接四边形,∴∠DEC=∠ABC=40°,∴∠DEC=∠C.∴DE=DC,∴AE=CD.∵∠BDE+∠A=180°,∠A=100°,∴∠BDE=80°,∴∠BED=80°,∴BE=BD,∴BC=BE+AE. 例2 已知等腰梯形ABCD中,AD∥BC.AD=a,BC=b,AB=CD=…  相似文献   

10.
题目:如图1在△ABC中,DE∥BC分别交AB、AC于D、E两点,过点E作EF∥AB交BC于点F,请按图示的数据计算.(1)求平行四边形DBEF的面积S,(2)求△EFC的面积S1,(3)求△ADE的面积S2,(4)发现的规律是什么?解:(1)S=BF×3=2×3=6.(2)S1=12CF×3=12×6×3=9.(3)因为:DE∥BC,EF∥AB.所以四边形DBFE是平行四边形所以DE=BF=2,所以∠ADE=∠ABC.因为∠A=∠A,所以△ADE~△ABC.  相似文献   

11.
一、割补法 例1 (2013年·山西中考题)已知如图,四边形ABCD是菱形,∠A =60°,AB =2,扇形BEF的半径为2,圆心角为60°,则图中的阴影部分面积是() A.2π/3-√3/2 B.2π/3-√3 C.π-√3/2 D.π-√3 解:连接BD 因为:在菱形ABCD中,∠A =60° 所以:∠ABC=120° 所以:∠DBC =60° 则:BC=BD =2 因为:扇形BEF的圆心角为60° 所以:∠EBD=∠CBF 所以:(DE)=(CF)  相似文献   

12.
<正>几何综合题是各地中考热点问题之一.下面举例介绍常见的解题策略.一、原题重现如图1,Rt△ABC中,∠ACB=90°,AC=BC,点D,E分别在AB,AC的延长线上,点F在DE上,AF与BC相交于点G,FA=FD,连接BE,∠AFD=2∠ABE.  相似文献   

13.
题已知△ABC中,∠A=60°,AB、AC的长分别为1和2,AD平分∠A,则AD等于_______. (03年第14届“希望杯”初二培训) 1.用重合如图1,过C作CE⊥AB于E.在Rt△AEC中, ∠EAC=60°,Ac=2,所以AE=1. 图1  相似文献   

14.
同学们在练习册中常能看到这样的题:已知在 Rt△ABC 中,∠C=Rt∠,AD 是∠A 的平分线,DE⊥AB,CE 交AD 于 F,如图1.  相似文献   

15.
学习了矩形的有关知识后,某些几何题,利用构造矩形的方法,可获得巧妙,迅捷的解答.例1如图1,四边形ABCD中,∠A=60°,且∠ABC=∠ADC=90°,则CB CD/AB AD的值是_____.  相似文献   

16.
本文应用构造全等三角形的方式对一类关于角度不等和线段不等的几何题进行证明,供参考. 一、构造全等三角形证两线不等 例1已知AD是△ABC的中线,∠BAD〉∠DAC,求证:AC〉AB. 证明:如图1,延长AD到E,使DE=AD,连结BE.则在△ADC和△EDB中,因为BD=CD,∠ADC=∠EDB,AD=DE,所以△ADC≌△EDB(SAS),所以∠DAC=∠DEB,  相似文献   

17.
一、将四边形问题转化为平行四边形问题例 1.已知 :四边形 ABCD中 ,AB=DC,AC=BD,且 AD≠BC。求证 :四边形 ABCD是等腰梯形。分析 :欲证此四边形为等腰梯形 ,可由定义来证明。从已知条件可看出 ,只要证明AD∥ BC即可。由此联想到构造平行四边形即可证得。证明 :过点 D作 DE∥ A B交BC于点 E,则∠ ABC=∠ DEC。∵ AB=DC,AC=DB,BC=CB,∴△ ABC≌△ DCB。∴∠ ABC=∠ DCB,∠ DEC=∠ DCB。∴ AB=DC=DE,∵ AB∥ DE,∴四边形 ABED是平行四边形 ,∴ AD∥ BC。又∵ AD≠ BC,∴四边形 ABCD是等腰梯形。二、将四…  相似文献   

18.
与角平分线有关的几何问题在各类考试(竞赛和中考)中屡见不鲜,解决这类问题时,若能通过巧添辅助线构造全等三角形常可使问题化难为易.例1如图,在△ABC中,∠BAC的平分线交BC于D,AC=AB BD,∠C=30°,则∠ABC的度数是(江苏省初中数学竞赛题)()A.45°B.60°C.75°D.90°解:延长AB到E,使AE=AC,连接DE,∵∠1=∠2,AD=AD,∴△AED≌△ACD(SAS).∴∠E=∠C=30°.又AE=AB BE,AC=AB BD,∴BE=BD.从而∠3=∠E.∴∠ABC=2∠E=60°.故选:B.反思:若在AC上截取AF=AB,同学们考虑怎样证明?例2如图,已知在△ABC中,AB>AC,AD为∠A的…  相似文献   

19.
在数学习题教学过程中,要引导学生对一些题目用不同的思想方法,从不同的思维角度去寻找多种解法,不仅有助于培养学生灵活运用知识的能力,而且也有助于对他们发散思维的训练和创新能力的培养.例:已知AD是△ABC的角平分线,求证:BDDC=ABAC.证法一:如图1,过D作DE∥AB,交AC于E,则BDDC=AEEC.由∠1=∠2,∠1=∠3,得∠2=∠3,∴AE=DE,故AEEC=DEEC,又DEEC=ABAC,∴BDDC=ABAC.证法二:如图2,过D作DE∥AC,交AB于E,则BDDC=BEAE.由∠1=∠2,∠2=∠3,得∠1=∠3,∴DE=AE,故BEAE=BEDE,又BEDE=ABAC,∴BDDC=ABAC.证法三:如图3,过C点作CE∥AD,交BA的延长线于E,则BDDC=ABAE.由∠1=∠2,∠2=∠3,∠1=∠E,得∠3=∠E,故AE=AC,∴BDDC=ABAC.证法四:如图4,过B点作BE∥AD,交CA的延长线于E,则BDDC=AEAC.由∠1=∠2,∠1=∠3,∠2=∠E,得∠3=∠E,故AE=AB,∴BDDC=ABAC.证法五:如图5,过B点作BE∥AC,交AD的延长线于E,则BDDC=BEAC...  相似文献   

20.
初二几何教材在“等腰三角形的判定”一节的开始 ,提出下面两道题 :其一是第 75页例 1,求证 :如果三角形一个外角的平分线平行于三角形的一边 ,那么这个三个形是等腰三角形。这就是 ,已知 :如图 ,∠ CAE是△ ABC的外角 ,∠ 1=∠ 2 ,AD∥ BC,求证 :AB=AC。  其二是第 76页练习题第 3题 ,已知 :如图 ,AD∥BC,BD平分∠ ABC。求证 :AB=AD。  这两道题提供了一种新的思路 :由平行线和角平分线的条件来推出一个三角形是等腰三角形。事实上 ,这个思路在解题中往往很有用处。例 1.已知 :如图 ,DC∥AB,AD∥ BC,∠ 1=∠ 2 ,∠ 3=∠ …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号