首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>2016年全国新课标Ⅰ卷理科数学第21题:已知函数f(x)=(x-2)e~x+a(x-1)~2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x_1、x_2是f(x)的两个零点,证明:x_1+x_2<2.这道题的第(Ⅰ)问,考查函数的零点问题,考生很熟悉,有利于考生稳定情绪,大部分考生可以得分,又利于考生切入第(Ⅱ)问.第(Ⅱ)问  相似文献   

2.
<正>2016年高考数学全国卷(乙)第21题如下:已知函数f(x)=(x-2)ex+a(x-1)2有两个零点.(1)求a的取值范围;(2)设x_1,x_2是f(x)的两个零点,证明:x1+x2<2.1背景分析本题的命制延续了2015年全国卷Ⅰ第21题的试题特点,题设条件简单明了,从诸如函数零点、参数范围等常考知识点处发问,使考生倍感亲切,有利于考生  相似文献   

3.
<正>本文介绍四种二元不等式相关问题的解决策略,以期抛砖引玉.一、将二元变为一元1.等量关系消元例1(2016年全国高考题)已知函数f(x)=(x-2)ex+a(x-1)x+a(x-1)2有两个零点.(1)求a的取值范围;(2)设x_1,x_2是f(x)的两个零点,证明:x_1+x_2<2.解(1)由题意知x=1不是f(x)的零  相似文献   

4.
<正>一、题目呈现(2016年全国课标卷Ⅰ)已知函数f(x)=(x-2)e~x+a(x-1)~2有两个零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x_1+x_2<2.二、试题解析1.第(1)问的分析与解答第(1)问由函数零点个数确定参数的取值范围,我们可以采用分类讨论,结合零点存在性定理求解;也可以采用参变量分离,数形结合的方法加以解决,这两种方法都是通性通法.  相似文献   

5.
<正>从近几年的高考来看,有关函数零点个数问题的高考试题层出不穷,对解决此类问题的能力考查力度也逐步加大.以下结合实例探讨判断函数零点个数的策略.一、利用解方程判断函数零点个数例1(2010年福建高考题)函数f(x)=x2+2x-3,x≤0,-2+ln x,x>{0的零点个数为()(A)0(B)1(C)2(D)3解当x≤0时,令x2+2x-3,x≤0,-2+ln x,x>{0的零点个数为()(A)0(B)1(C)2(D)3解当x≤0时,令x2+2x-3=0,解得x=-3;当x>0时,令-2+ln x=0,解得x=e2+2x-3=0,解得x=-3;当x>0时,令-2+ln x=0,解得x=e2.所以f(x)有两个零点,故选C.二、利用函数图象判断函数零点个数  相似文献   

6.
<正>导数处理函数综上所述合问题的"必备工具",主要可以用来判断函数的单调性、求函数的极值、最值,以及利用导数的几何意义来求切线方程,本文就来谈谈利用导数解决一些综合性问题。例1已知函数f(x)=(x-2)ex+a(x-1)x+a(x-1)2有两个零点,求实数a的取值范围。  相似文献   

7.
<正>如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x_1和x_2,那么x_1+x_2=-b/a,x_1x_2=c/a,这就是著名的韦达定理.现行义务教育初中数学教材中的证法是利用一元二次方程ax2+bx+c=0(a≠0)有两个实数根x_1和x_2,那么x_1+x_2=-b/a,x_1x_2=c/a,这就是著名的韦达定理.现行义务教育初中数学教材中的证法是利用一元二次方程ax2+bx+c=0的求根公式先求出它的两个根,然后分别计算这两根之和与两根之积.笔者在文[1]中不借助于一元二次方程的求根公式给出了韦达定理的三种代数证法,本文再给出韦达定理  相似文献   

8.
<正>命题1函数f(x)=ax+b(a≠0)满足:f(x_1)f(x_2)<0,则■x_0∈(x_1,x_2),有f(x_0)=0.证明:函数f(x)=ax+b的零点即方程ax+b=0的根,b由a≠0知方程ax+b=0有实数根x_0=-a/b,即f(x_0)=0,所以只需证x_0=-∈(x,由f(x_1)f(x_2)<0得(ax_1+b)(ax_2+b)<0即:  相似文献   

9.
<正>一、题目在讲完一元二次不等式这节内容后,有这样一道课后的习题:设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m0的解集;(2)若a>0,且0相似文献   

10.
设一元二次方程ax2+bx+c=0的两根是x1、x2,要求不解方程,我们能够熟练地求出关于x1、x2的对称代数式(如x_1~2+x_2~2、x_1~3+x_2~3、1/x1+1/x2、(x1-x2)2、|x1-x2|等)的值.对含x1、x2的非对称代数式的值的求法,现举例介绍三种转化的方法:例设x1、x2中二次方程x2+x-3=0的两个根,那么x_1~3-4x_2~2+19的值是( )(1996年全国初中数学联赛)(A)- 4.(B)8.(C)6.(D)0.解法1:(配偶转化法):设A=x_1~3-4x_1~2+19,B=x_2~3-4x_1~2+19.∵x1、x2是方程x2+x-3=0的两根,∴x1+x2=-1,x1·x2=-3.  相似文献   

11.
<正>1.忽视变量的范围例1已知x,y∈R且3x2+2y2+2y2=6x,求x2=6x,求x2+y2+y2的最大值。错解:由3x2的最大值。错解:由3x2+2y2+2y2=6x→y2=6x→y2=6x-3x2=6x-3x2/2,所以x2/2,所以x2+y2+y2=x2=x2+6x-3x2+6x-3x2/2=-1/2x2/2=-1/2x2+3x=-1/2(x2+3x=-1/2(x2-6x+9)+9/2=-1/2(x-3)2-6x+9)+9/2=-1/2(x-3)2+9/2。所以(x2+9/2。所以(x2+y2+y2)_(max)=9/2。错因剖析:由(x2)_(max)=9/2。错因剖析:由(x2+y2+y2)_(max)=9/2知x=3,  相似文献   

12.
<正>焦半径公式:已知F1,F2是椭圆x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的左、右焦点,P(x_0,y_0)是椭圆上一点,则|PF_1|=a+ex_0,|PF_2|=a-ex_0。证明:椭圆的左准线方程为x=-a2=1(a>b>0)的左、右焦点,P(x_0,y_0)是椭圆上一点,则|PF_1|=a+ex_0,|PF_2|=a-ex_0。证明:椭圆的左准线方程为x=-a2/c。由椭圆的第二定义,得|PF_1|/(x_0+a2/c。由椭圆的第二定义,得|PF_1|/(x_0+a2/c)=c/a,即  相似文献   

13.
<正>一、零点为变量方法的发现近一段时间,笔者多次接触到一些试题,解答这些试题时,如采用常规方法,则烦琐易错;而如果把零点设置为变量,则会简便易行,下面具体分析。例1已知函数f(x)=x2+ax+b有两个零点x_1,x_2,且满足0相似文献   

14.
<正>双极值点问题主要考查对所给导数的充分理解及对已知条件的灵活运用,同时也考查考生的逻辑思维能力及思维的灵活性与严谨性。类型一:以双极值点x_1、x_2替代函数中的未知变量例1已知f(x)=xlnx-a/2x2-x+a(a∈R)在定义域内有两个不同的极值点。(1)求a的取值范围;(2)记两个极值点  相似文献   

15.
<正>二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c的对称轴为x=-1,A(2,1)、B(m,1)为抛物线上  相似文献   

16.
<正>函数的零点、方程的根、函数图象的交点问题是高考的热点.这三者之间形异质同,解题时要注意三者之间的互相转化.本文介绍解决此类问题的以下几种策略.策略1利用方程f(x)=0的根求解例1求函数f(x)={x2+2x-3,x≤0,ln x-2,x>0的零点个数.解当x≤0时,由方程x2+2x-3,x≤0,ln x-2,x>0的零点个数.解当x≤0时,由方程x2+2x-3=0,解得x=-3;  相似文献   

17.
<正>一、试题再现已知函数f(x)=ex/x-ln x+x-a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则x1x2<1.本题是2022年全国甲卷导数压轴题.第(1)问已知不等式求参数的取值范围,难度中等;第(2)问考查导数的应用,属于极值点偏移问题,难度偏难.  相似文献   

18.
第一试一、解方程:(x+3)~(1/2)=|x-2|-1.解:先限定 x≥2:这时|x-2|=x-2,原方程化为(x+3)~(1/2)=x-3,x+3=x~2-6x+9,∴x~2-7x+6=0,(x-6)(x-1)=0,∴x_1=6,x_2=1(x_2不合我们的限定,舍  相似文献   

19.
例已知函数f(x)=2x~2+1/x+λlnx(x>0),f(x)的导数是f'(x)。(Ⅰ)当λ<0时,求证:对于任意的两个不等的正数x_1,x_2,(f(x_1)+f(x_2))/2>f((x_1+x_2)/2);  相似文献   

20.
<正>本文以2015年江苏高考数学卷第19题为例,对高考函数的常考问题进行探究,以总结出解决这类问题的有效思路与解法.一、试题呈现题目已知函数f(x)=x3+ax3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c-a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号