首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2015年安庆市重点中学高三联考理科数学一道填空题是:已知O为△ABC的外心,AB=6,AC=10,AO=xAB+yAC且,2x+10y=5,则cos∠BAC=.文[1]先利用三角形外心的特征,借用垂径定理结合向量数量积的几何意义,给出了该题的两种解法,并由此以三角形内角的三角函数值为系数,得到三角形的"五心"的  相似文献   

2.
题目:已知。为三角形ABC的外心,AB=c,AC=b,∠LBAC=120°,若→AO=→xAB+→yAC,则x+y,的最小值为___.解析1:如图1,过0点作OF平行AC、OG平行于AB分别交AB、AC于F、G,过0作OD垂直于AC、作OE垂直于AB,垂足分别为D、E.  相似文献   

3.
1 一个有趣性质 性质 在△ABC中,若AD=1/xAB,AE=1/yAC(x〉1,y〉1),BE,CD相交于点M,  相似文献   

4.
平面向量基本定理:如果e1,e2是同一平面内两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.这是一个重要的定理,它反映了平面向量分解的唯一性,利用此唯一性可解决求相交线交成线段比的问题.这类题的关键是:首先选择恰当的基底,再将同一向量用两种不同方法表示,由平面向量基本定理得出方程组解出.例1求证:平行四边形ABCD的对角线互相平分.图1证明:如图1,设AB=a,AD=b,AC与BD相交于O,AO=λAC=λ(a+b),BO=μBD=μ(a-b),则b=AB=AO-BO=λ(a+b)-μ(a-b)=(λ-μ)a+(λ+μ)b由平面向量基本定理知…  相似文献   

5.
本文主要证明了平行四边形的一个向量性质:不过点A的直线l分别交平行四边形ABCD边所在直线AB,AD于点P,Q,交对角线所在直线AC于点M,若满足AP=xAB,AQ=yAD,AM=kAC,则1/x+1/y=1/k,并探讨了该向量性质的逆定理及进行空间上的推广.  相似文献   

6.
构造向量巧证不等式   总被引:1,自引:0,他引:1  
向量是高中教材的新增内容 ,作为现代数学重要标志之一的向量引入中学数学后 ,给中学数学带来无限生机。笔者在阅读文 [1 ]发现 ,该文所举的各个例子 ,均可通过构造向量 ,利用向量不等式 :m·n≤ |m|·|n|( )轻松获证 ,显示了向量在证明不等式时的独特威力。例 1 已知a、b、c∈R ,且a +2b +3c=6,求证a2+2b2 +3c2 ≥ 6。证明 构造向量 :m =(a ,2b ,3c) ,n =( 1 ,2 ,3 ) ,由向量不等式 ( )得6=a +2b +3c≤a2 +2b2 +3c2 · 1 +2 +3 ,∴a2 +2b2 +3c2 ≥ 6。例 2 已知 :a、b∈R+ ,且a +b =1 ,求证(a +1a) 2 +(b +1b) 2 ≥2 52 。证明 构造…  相似文献   

7.
一、考查向量的坐标表示、性质及运算例1(2004年河南、河北、山东、山西、安徽、江西高考题)已知a,b为单位向量,它们的夹角为60°么,那a+3b=_____.A.姨7B.姨10C.13D.4姨解法一(解析法)∵a+3b=(a+3b)2=姨姨a2+9b2+6a·b.∵a2=a=1,(3b)2=3b=96×a×b×cos60°=3.22,∴a+3b=姨13.选C.解法二(数形结合法)如图1所示,设A B=a,BC=3b,则A C=a+3b,且∠A BC=120°.在△ABC中,由余弦定理解得A C=姨13.选C.小结熟记向量的运算公式,熟悉向量的性质,理解向量的几何意义,是解决向量问题的关键.二、综合考查向量与三角例2(2004年湖南高考题)已知向量…  相似文献   

8.
一、平移法构造新数列1.平移向量为常量例1在数列{a}n中,若a1=1,an+1=2an+3,(n≥1),则数列的通项an=.解:由题意得an+1=2an+3.(1)则设存在x满足等式an+1+x=2(an+x),与(1)相比较可得x=3.即an+1+3=2(an+3).所以数列{an+3}是以a1+3=4为首项,以2为公比的  相似文献   

9.
平面向量     
☆基础篇诊断检测一、选择题1.下列说法正确的是()(A)平行向量就是与向量所在直线平行的向量.(B)长度相等的向量叫相等向量.(C)零向量的长为0.(D)共线向量是在一条直线上的向量.2.已知向量a与b反向,下列等式成立的是()(A)|a|-|b|=|a-b|.(B)|a+b|=|a-b|.(C)|a|+|b|=|a-b|.(D)|a|+|b|=|a+b|.3.给出下列命题:(1)如果λa=λb(λ≠0),那么a=b.(2)若a0为单位向量,a与a0平行,则a=|a|a0.(3)设a=λ1e1+λ2e2(λ1,λ2∈R),则当e1与e2共线时,a与e1也共线.其中真命题的个数是()(A)0.(B)1.(C)2.(D)3.4.将函数y=x2+4x+5的图象按向量a经过一次平移后,…  相似文献   

10.
<正>一、试题呈现已知平面向量a,b,c(c≠0)满足|a|=1,|b|=2,a·b=0,(a-b)·c=0,记平面向量d在a,b方向上的投影分别为x,y,d-a在c方向上的投影为z,则x2+y2+y2+z2+z2的最小值是___.二、解法探究解法1几何法  相似文献   

11.
向量的主要性质①向量的加法适合向量加法的三角形法则或平行四边形法则,即AB+BC=AC; ②若e1、e2是平面α内非零不共线向量,则对于α内任一向量a,有且只有一对实数λ1λ2,使得a=λ1 e1+λ2 e2成立; ③非零向量a=(x1,y1),b=(x2,y2)的数量积为a·b=x1x2+y1y2; ④设非零向量a=(x1,y1),b=(x2,y2),则a⊥b(?)a·b=x1x2+y1y2=0;  相似文献   

12.
向量共线的充要条件是由实数与向量的积推出的,它是平面向量的基本定理的一种特殊情况,具体内容为:向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa, 由于零向量与任一向量共线,故上述定理又可叙述为向量b与向量a共线的充要条件是:存在不全为0的实数λ1, λ2, 使得λ1a+λ2b=0, 它的逆否命题为:若向量a, b不共线,(a≠0, b≠0),且λ1a+λ2b=0, 则λ1=λ2=0,这些结论可用来证明几何中三点共线与两直线平行等问题.举例说明如下:  相似文献   

13.
本刊文[1]用了10种方法,通过15个例题说明了多元函数最值的求法.受此启发,本文将用向量中的重要不等式a2·b2≥(a·b)2来解决部分多元函数最值问题,权作对文[1]的补充.我们把a和b都看成n维向量(n≥2),它们的坐标表示分别是a=(a1,a2,…,an),b=(b1,b2,…,bn),定义向量a和b的数量积a·b=a1b1+a2b2+…+anbn,则a=a12+a22+…+an2,b=b12+b22+…+bn2,由柯西不等式:(a12+a22+…+an2)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn)2,推得a2·b2≥(a·b)2.下面举例说明其应用.例1已知3a2+2b2=5,试求y=2a2+1·b2+2的最大值.解由题意,将已知条件等价变形为32(2a2…  相似文献   

14.
向量的性质常见于教材的例、习题中 ,但其应用是教材的薄弱内容 .同学们学习时应掌握下面性质的应用 ,以加深对向量知识的理解和掌握 .1若 e1、e2 是平面α内非零不共线向量 ,则对于α内任一向量 a,有且只有一对实数λ1,λ2 ,使得 a=λ1e1+λ2 e2 成立 ;2非零向量 a =( x1,y1) ,b =( x2 ,y2 )的数量积为a .b =x1x2 +y1y2 ;3设向量 a =( x1,y1) ,b =( x2 ,y2 ) ,b≠ 0 ,则 a∥b x1y2 - x2 y1=0 ;4设非零向量 a =( x1,y1) ,b =( x2 ,y2 ) ,则 a⊥b x1x2 +y1y2 =0 ;5非零向量 a =( x1,y1) ,b =( x2 ,y2 )的夹角θ满足 cosθ =cos〈a,b〉 =a .b|…  相似文献   

15.
新教材的特点之一是引入向量,并且用坐标表示向量.这便为用“数”的方法,研究立体几何“形”的问题,建立了崭新的平台.1垂直用空间向量的观点处理立体几何的线面关系,把几何问题代数化,降低立体几何的难度.图1例1如图1,已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD=60°,当CDCC1的值为多少时,能使A1C⊥平面C1BD?请给出证明.解:设CDCC1=x,CD=2,则CC1=2x.因为BD⊥平面ACC1A1,所以BD⊥A1C.所以只须求满足:A1C.C1D=0即可.设AA1=a,AD=b,DC=c,则A1C=a+b+c,C1D=a-c.所以A1C.C1D=(a+b+c)(a-c)=a2…  相似文献   

16.
因为零向量不起眼 ,往往被忽视 ,这是不公平的 ,我们应学会从平凡中发现奇异 .仔细分析 ,零向量是一个特殊向量 ,它有两个特征 :( 1)方向不定 ;( 2 )长度为 0 .利用这些特征我们可以得到如下问题链1 由特征 ( 1)引发的问题链( 1)已知 :O是圆内接正三边形 P1 P2 P3 的圆心 .求证 :OP1 +OP2 +OP3 =O证明 :设 a=OP1 +OP2 +OP3 ,将 OP1 、OP2 、OP3 均绕点 O逆时针旋转 12 0°,得到一个新向量 b=OP2 +OP3 +OP1 .所以 a=b,即 a绕 O旋转 12 0°后 ,仍为 a,说明 a的方向不定 ,故 a为零向量 .所以 OP1 +OP2 +OP3 …  相似文献   

17.
定义型试题即试题中给出一个考生从未接触过的新规定 ,要求考生当即应用 ,用以考查考生的接受能力和应变能力 .一、定义新概念【例 1】 若对n个向量a1 ,a2 ,… ,an 存在n个不全为零的实数k1 ,k2 ,… ,kn,使得k1 a1 +k2 a2 +… +knan =0成立 ,则称向量a1 ,a2 ,… ,an 为“线性相关” ,依此规定 ,能说明a1 =(1,0 ) ,a2 =(1,-1) ,a3=(2 ,2 )“线性相关”的实数k1 ,k2 ,k3依次可取     (写出一组数值即可 ) .略解 :∵k1 a1 +k2 a2 +k3a3=0∴ k1 +k2 + 2k3=0-k2 + 2k3=0k1 =-4k3,k2 =2k3,取k3=1,k1 =-4 ,k2 =2 .故k1 ,k2 ,k3依次取 -4 ,2 ,1…  相似文献   

18.
选择题 1.若方程sin二一cosx二a有解,则实数a的取值范围是 A一1续a簇IB一V万蕊a续1 C一V丁蕊a感V万D一1落a蕊V泛~ 2.当。相似文献   

19.
b2=|b|2=(2n-3m)2=9m2-12m·n+4n2=9-12×1/2+4=7,∴|a|=71/2,|b|=71/2.又∵a·b(2m+n)·(2n-3m)=-6m2+m·n+2n2=-6+1/2+2=-31/2,∴cos〈a,b〉=(a·b)/(|a||b|)=(-31/2)/(71/2×71/2)=-1/2,∴向量a与向量b所成的角为120°.  相似文献   

20.
初学平面向量这部分内容时,同学们常常会出现各种错误.现列举几种常见错误,供大家辨析.一、两向量夹角的意义不清例1△ABC三边长均为2,且BC=a,CA=b,AB=c,求a.b+b.c+c.a的值.错解:∵△ABC三边长均为2,∴∠A=∠B=∠C=60°,|a|=|b|=|c|=2.∴a.b=|a|.|b|cosC=2,同理可得b.c=c.a=2,∴a.b+b.c+c.a=6.图1评析:这里误认为a与b的夹角为∠BCA,两向量的夹角应为平面上同一起点表示向量的两条有向线段间的夹角,范围是[0,π].因此a与b的夹角应为π-∠BCA.正解:如图1,作CD=BC,a与b即向量BC与CA的夹角为180°-∠BCA=120°.∴a.b=|a|.|b|cos12…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号