首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonrecursive structural equation models generally take the form of feedback loops, involving 2 latent variables that are connected by 2 unidirectional paths, 1 starting with each variable and terminating in the other variable. Nonrecursive models belong to a larger class of path models that require the use of instrumental variables (IVs) to achieve model identification. Prior research has focused on SEM parameter estimation with IVs when indicators were continuous and normally distributed. Much less is known about how estimators function in the presence of categorical indicators, which are commonly used in the social sciences, such as with cognitive and affective instruments. In this study, there was specific interest in comparing the 2-stage least squares (2SLS) estimator and its categorical variant to other recommended estimators. This study compares the performance of several estimation approaches for fitting structural equation models with categorical indicator variables when IVs are necessary to obtain proper model estimates. Across conditions, 1 extension of the nonlinear 2SLS (N2SLS) approach, the nonlinear 3-stage least squares (N3SLS), which accounts for correlated errors among regressors within each model (as does the N2SLS), as well as correlations of errors across models, which N2SLS does not, appears to work the best among methods compared.  相似文献   

2.
结构方程模型(SEM)的原理及操作   总被引:10,自引:0,他引:10  
结构方程模型(SEM)是应用线性方程系统表示观测变量与潜在变量之间及潜在变量之间关系的一种统计方法。当前,SEM及相应的LISREL软件已成为心理学等社会学科中广泛应用的一种分析思想和技术。文章简要介绍了SEM的特点、原理及LISREL的操作方法。  相似文献   

3.
Structural equation modeling (SEM) is now a generic modeling framework for many multivariate techniques applied in the social and behavioral sciences. Many statistical models can be considered either as special cases of SEM or as part of the latent variable modeling framework. One popular extension is the use of SEM to conduct linear mixed-effects modeling (LMM) such as cross-sectional multilevel modeling and latent growth modeling. It is well known that LMM can be formulated as structural equation models. However, one main difference between the implementations in SEM and LMM is that maximum likelihood (ML) estimation is usually used in SEM, whereas restricted (or residual) maximum likelihood (REML) estimation is the default method in most LMM packages. This article shows how REML estimation can be implemented in SEM. Two empirical examples on latent growth model and meta-analysis are used to illustrate the procedures implemented in OpenMx. Issues related to implementing REML in SEM are discussed.  相似文献   

4.
The relations between the latent variables in structural equation models are typically assumed to be linear in form. This article aims to explain how a specification error test using instrumental variables (IVs) can be employed to detect unmodeled interactions between latent variables or quadratic effects of latent variables. An empirical example is presented, and the results of a simulation study are reported to evaluate the sensitivity and specificity of the test and compare it with the commonly employed chi-square model test. The results show that the proposed test can identify most unmodeled latent interactions or latent quadratic effects in moderate to large samples. Furthermore, its power is higher when the number of indicators used to define the latent variables is large. Altogether, this article shows how the IV-based test can be applied to structural equation models and that it is a valuable tool for researchers using structural equation models.  相似文献   

5.
Latent class models are often used to assign values to categorical variables that cannot be measured directly. This “imputed” latent variable is then used in further analyses with auxiliary variables. The relationship between the imputed latent variable and auxiliary variables can only be correctly estimated if these auxiliary variables are included in the latent class model. Otherwise, point estimates will be biased. We develop a method that correctly estimates the relationship between an imputed latent variable and external auxiliary variables, by updating the latent variable imputations to be conditional on the external auxiliary variables using a combination of multiple imputation of latent classes and the so-called three-step approach. In contrast with existing “one-step” and “three-step” approaches, our method allows the resulting imputations to be analyzed using the familiar methods favored by substantive researchers.  相似文献   

6.
Meta-analysis is the statistical analysis of a collection of analysis results from individual studies, conducted for the purpose of integrating the findings. Structural equation modeling (SEM), on the other hand, is a multivariate technique for testing hypothetical models with latent and observed variables. This article shows that fixed-effects meta-analyses with the following characteristics can be modeled in the SEM framework: (a) using any type of effect size; (b) including categorical and continuous moderators; and (c) including multivariate effect sizes. Empirical examples in LISREL syntax are used to demonstrate the equivalence between the meta-analytic and SEM approaches. Future directions for and extensions to this approach are discussed.  相似文献   

7.
In the presence of omitted variables or similar validity threats, regression estimates are biased. Unbiased estimates (the causal effects) can be obtained in large samples by fitting instead the Instrumental Variables Regression (IVR) model. The IVR model can be estimated using structural equation modeling (SEM) software or using Econometric estimators such as two-stage least squares (2SLS). We describe 2SLS using SEM terminology, and report a simulation study in which we generated data according to a regression model in the presence of omitted variables and fitted (a) a regression model using ordinary least squares, (b) an IVR model using maximum likelihood (ML) as implemented in SEM software, and (c) an IVR model using 2SLS. Coverage rates of the causal effect using regression methods are always unacceptably low (often 0). When using the IVR model, accurate coverage is obtained across all conditions when N = 500. Even when the IVR model is misspecified, better coverage than regression is generally obtained. Differences between 2SLS and ML are small and favor 2SLS in small samples (N ≤ 100).  相似文献   

8.
Although much is known about the performance of recent methods for inference and interval estimation for indirect or mediated effects with observed variables, little is known about their performance in latent variable models. This article presents an extensive Monte Carlo study of 11 different leading or popular methods adapted to structural equation models with latent variables. Manipulated variables included sample size, number of indicators per latent variable, internal consistency per set of indicators, and 16 different path combinations between latent variables. Results indicate that some popular or previously recommended methods, such as the bias-corrected bootstrap and asymptotic standard errors had poorly calibrated Type I error and coverage rates in some conditions. Likelihood-based confidence intervals, the distribution of the product method, and the percentile bootstrap emerged as leading methods for both interval estimation and inference, whereas joint significance tests and the partial posterior method performed well for inference.  相似文献   

9.
This article applies Bollen’s (1996) 2-stage least squares/instrumental variables (2SLS/IV) approach for estimating the parameters in an unconditional and a conditional second-order latent growth model (LGM). First, the 2SLS/IV approach for the estimation of the means and the path coefficients in a second-order LGM is derived. An empirical example is then used to show that 2SLS/IV yields estimates that are similar to maximum likelihood (ML) in the estimation of a conditional second-order LGM. Three subsequent simulation studies are then presented to show that the new approach is as accurate as ML and that it is more robust against misspecifications of the growth trajectory than ML. Together, these results suggest that 2SLS/IV should be considered as an alternative to the commonly applied ML estimator.  相似文献   

10.
Recent developments in finite mixture modeling allow for the identification of different developmental processes in distinct but unobserved subgroups within a population. The new approach, described within the general growth mixture modeling framework (Muthen, 2001, in press), extends conventional random coefficient growth models to incorporate a categorical latent trajectory variable representing latent classes or mixtures (i.e., the subgroups in the population whose membership must be inferred from the data). This article provides a didactic example of this new methodology with adolescent alcohol use data, which is shown to consist of a mixture of distinct subgroups, defined by unique growth trajectories and differing predictors and sequelae. The method is discussed as a useful tool for mapping hypotheses of development onto appropriate statistical models.  相似文献   

11.
Structural equation modeling is a common multivariate technique for the assessment of the interrelationships among latent variables. Structural equation models have been extensively applied to behavioral, medical, and social sciences. Basic structural equation models consist of a measurement equation for characterizing latent variables through multiple observed variables and a mean regression-type structural equation for investigating how explanatory latent variables influence outcomes of interest. However, the conventional structural equation does not provide a comprehensive analysis of the relationship between latent variables. In this article, we introduce the quantile regression method into structural equation models to assess the conditional quantile of the outcome latent variable given the explanatory latent variables and covariates. The estimation is conducted in a Bayesian framework with Markov Chain Monte Carlo algorithm. The posterior inference is performed with the help of asymmetric Laplace distribution. A simulation shows that the proposed method performs satisfactorily. An application to a study of chronic kidney disease is presented.  相似文献   

12.
This article shows how nonlinear latent curve models may be fitted for simultaneous analysis of multiple variables measured longitudinally using Mx statistical software. Longitudinal studies often involve observation of several variables across time with interest in the associations between change characteristics of different variables measured within individuals. Other applications involve repeated measures for distinguishable individuals nested within small groups, such as families, with interest in the associations between change characteristics in variables for individuals within groups. This article shows how Mx can be used to carry out analysis of multiple variables measured over time where at least one variable is described by a function that includes one or more parameters that enter the model nonlinearly. An example is provided.  相似文献   

13.
In a recent note in the Teacher's Corner of this journal, de Jong (1999) proposed a method for computing hierarchical or fixed-order regressions in the context of latent variables. The essence of this approach is to decompose the predictor variables in the regression into orthogonal components based on a Cholesky decomposition and to regress the dependent variable on these orthogonal components. The components may be conceived of as phantom factors that do not have their own indicators. Because the idea of sequential entry of predictors in a latent variable regression framework seems generally to be unknown, the approach was developed by de Jong for latent variable regressions. However, it equally can be used for observed variable regression or path models. In this article we show that the phantom factors are unnecessary to achieve the objectives of a hierarchical regression. We give a direct approach that is equivalent to de Jong's approach.  相似文献   

14.
Researchers have devoted some time and effort to developing methods for fitting nonlinear relationships among latent variables. In particular, most of these have focused on correctly modeling interactions between 2 exogenous latent variables, and quadratic relationships between exogenous and endogenous variables. All of these approaches require prespecification of the nonlinearity by the researcher, and are limited to fairly simple nonlinear relationships. Other work has been done using mixture structural equation models (SEMM) in an attempt to fit more complex nonlinear relationships. This study expands on this earlier work by introducing the 2-stage generalized additive model (2SGAM) approach for fitting regression splines in the context of structural equation models. The model is first described and then investigated through the use of simulated data, in which it was compared with the SEMM approach. Results demonstrate that the 2SGAM is an effective tool for fitting a variety of nonlinear relationships between latent variables, and can be easily and accurately extended to models including multiple latent variables. Implications of these results are discussed.  相似文献   

15.
This article introduces a new inferential test for acyclic structural equation models (SEM) without latent variables or correlated errors. The test is based on the independence relations predicted by the directed acyclic graph of the SEMs, as given by the concept of d-separation. A wide range of distributional assumptions and structural functions can be accommodated. No iterative fitting procedures are used, precluding problems involving convergence. Exact probability estimates can be obtained, thus permitting the testing of models with small data sets.  相似文献   

16.
Most researchers acknowledge that virtually all structural equation models (SEMs) are approximations due to violating distributional assumptions and structural misspecifications. There is a large literature on the unmet distributional assumptions, but much less on structural misspecifications. In this paper, we examine the robustness to structural misspecification of the model implied instrumental variable, two-stage least square (MIIV-2SLS) estimator of SEMs. We introduce two types of robustness: robust-unchanged and robust-consistent. We develop new robustness analytic conditions for MIIV-2SLS and illustrate these with hypothetical models, simulated data, and an empirical example. Our conditions enable a researcher to know whether, for example, a structural misspecification in the latent variable model influences the MIIV-2SLS estimator for measurement model equations and vice versa. Similarly, we establish robustness conditions for correlated errors. The new robustness conditions provide guidance on the types of structural misspecifications that affect parameter estimates and they assist in diagnosing the source of detected problems with MIIVs.  相似文献   

17.
Valuable methods have been developed for incorporating ordinal variables into structural equation models using a latent response variable formulation. However, some model parameters, such as the means and variances of latent factors, can be quite difficult to interpret because the latent response variables have an arbitrary metric. This limitation can be particularly problematic in growth models, where the means and variances of the latent growth parameters typically have important substantive meaning when continuous measures are used. However, these methods are often applied to grouped data, where the ordered categories actually represent an interval-level variable that has been measured on an ordinal scale for convenience. The method illustrated in this article shows how category threshold values can be incorporated into the model so that interpretation is more meaningful, with particular emphasis given to the application of this technique with latent growth models.  相似文献   

18.
Item response theory (IRT) models can be subsumed under the larger class of statistical models with latent variables. IRT models are increasingly used for the scaling of the responses derived from standardized assessments of competencies. The paper summarizes the strengths of IRT in contrast to more traditional techniques as well as in contrast to alternative models with latent variables (e. g. structural equation modeling). Subsequently, specific limitations of IRT and cases where other methods might be preferable are lined out.  相似文献   

19.
Methods of latent curve analysis (latent growth modeling) have recently emerged as a versatile tool for investigating longitudinal change in measured variables. This article, using higher order factor models as suggested by McArdle (1988) and Tisak and Meredith (1990), illustrates latent curve analysis for the purpose of modeling longitudinal change directly in a latent construct. The construct of interest is assumed to be indicated by several measured variables, all of which are observed at the same multiple time points. Examples with simultaneous estimation of covariance and mean structures are provided for both a single group and a two-group scenario.  相似文献   

20.
In longitudinal studies, investigators often measure multiple variables at multiple time points and are interested in investigating individual differences in patterns of change on those variables. Furthermore, in behavioral, social, psychological, and medical research, investigators often deal with latent variables that cannot be observed directly and should be measured by 2 or more manifest variables. Longitudinal latent variables occur when the corresponding manifest variables are measured at multiple time points. Our primary interests are in studying the dynamic change of longitudinal latent variables and exploring the possible interactive effect among the latent variables.

Much of the existing research in longitudinal studies focuses on studying change in a single observed variable at different time points. In this article, we propose a novel latent curve model (LCM) for studying the dynamic change of multivariate manifest and latent variables and their linear and interaction relationships. The proposed LCM has the following useful features: First, it can handle multivariate variables for exploring the dynamic change of their relationships, whereas conventional LCMs usually consider change in a univariate variable. Second, it accommodates both first- and second-order latent variables and their interactions to explore how changes in latent attributes interact to produce a joint effect on the growth of an outcome variable. Third, it accommodates both continuous and ordered categorical data, and missing data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号