首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[已知] △ABC中,∠C=90° [求证] AB~2=AC~2+BC~2 [证明] 以B为园心BC长为半径作园,AB交园于E并延长AB交园周于D,则AC与此园切于C点,据园幂定理可得 AC~2=AE·AD=(AB-BE)(AB+BD)即AC~2=AB~2-BC~2;∴AB~2=AC~2+BC~2。 [另证]如图,延长CA,并取AD=CB。作DE⊥CD,并取DE=AC,联接EA、EB。因而△ABC≌△AED。故有EA⊥AB。就  相似文献   

2.
ABC中,∠C=90°,∠A、∠B、∠C对的边分别为a、b、c.如图1、求证:c~2=a~2 b~2 证明:以A为圆心、斜边AB长为半径作⊙A,并延长BC与⊙A交于D,延长AC的两端交⊙A于E、F,则BC=CD(垂径定理),又EC.CF=BC.CD(交弦定理)即(AE AC)(AF-AC)=BC.CD,即(c b)(c-b)=a~2故c~2=a~2 b~2.上述证法的关键是添了辅助圆,把直角和垂直于弦的直径联系起来,应用了圆的知识.因为直线形和圆的结合是平几的重大  相似文献   

3.
证明在同一直线上的几条线段成比例,是学生感到头痛的事。他们找不到相似三角形,不知从何处下手,从何处着想。这时,教师应该引导学生梳理线段成比例的有关定理,通过例题教给学生证明这类问题的方法。下面是我总结的几种常用的证明方法,供同行们参考。一、代数递推法由于欲证的诸线段在同一直线上,故均可用“和”、“差”表示,并用代数法递推和线段代换导出结论。例1.如图,C为线段AB的中点,BCDE为正方形。以B为圆心BD为半径的半圆与AB及其延长线交于H、K,CE、BD交于O,DK交CE、BE于M、N。求证:AH·AK=2AC~2。证明:AH·AK=(AC-CH)(AC+CK) =AC~2+AC·CK-AC·CH-CH·CK =AC~2+AC(CK-CH)-CD~2 =AC~2+AC(2BC)-AC~2 =AC~2+2AC~2-AC~2 =2AC~2  相似文献   

4.
成果集锦     
直角三角形的一个充要条件黑龙江省绥化市北林区五中 王 航  定理 在△ABC中,CD平分∠C ,则∠C =90°的充要条件是1AD2 1BD2 =2CD2 .①证明:如图,作BE∥AC ,AF∥BC ,分别交CD的延长线于点E、F ,则有CDDE =ADDB =DFCD .若∠C =90°,则∠CBE =∠CAF =∠C =90°,∠BCE =∠ACF =45°,BC =BE ;AC =AF ,于是由DF =ADDB·CD知2AC2 =AC2 AF2 =CF2 =(CD ADDB·CD) 2 ,类似得 2BC2 =(CD DBAD·CD) 2 .以上两式相加,注意到AC2 BC2 =AB2 ,AD DB =AB ,即得2AB2 =CD2 ·AB2 ( 1AD2 1BD2 ) ,即…  相似文献   

5.
如图一,在△ABC中,AD为∠BAC的平分线,则AD~2 BD·DC=AB·AC. 这就是平面几何中著名的斯库顿定理.它的证法简便. 证明:延长∠BAC的平分线AD交⊙ABC于E,连结BE.∴∠E=∠C,∠BAE=∠DAC,∵△ABE∽△ADCAB/AE=AD/AC,∴AD(AD DE)=AB·AC.即AD~2 AD·DE=AB·AC,由相交弦定理得AD·DE=BD·DC,∴AD~2 BD·DC=AB·AC.  相似文献   

6.
本文给出圆中具有公共端点的三条弦及其夹角之间的一个数量关系,并举例说明其应用。 定理 若AB,AC,AD是⊙O的三条弦,∠BAC=α,∠CAD=β则AB·sinβ AD·sinα=AC·sin(α β) 证明 设⊙O的半径为R,连结BC,BD,CD,则由正弦定理,得:BC=2R·sinα,CD=2R·sinβ,BD=2R·sin(α β)。  相似文献   

7.
用三弦定理解竞赛题   总被引:1,自引:0,他引:1  
由笔者提出并命名的三弦定理是:如图1,已知PA、PB、PC 是⊙O 的三条弦,记∠APB=α,∠PBC=β,则 PB·sin(α β)=PC·sinα PA·sinβ.证明:设⊙O 的半径为 R,连结 AB、BC、AC,则 AC=2R·sin(α β),AB=2R·sinα,BC=2R·sinβ.由托勒密定理,得 PB·AC=PC·AB PA·BC.将上面三个等式代入此式,得PB·sin(α β)=PC·sinα PA·sinβ.  相似文献   

8.
平面几何中最值问题的求解常常有一定的难度。笔者根据多年的教学实践,归纳出以下几种求法,仅供读者参考。 一、运用一元二次方程根的判别式 例1 三角形一内角为60°,此角所对的边为1,求其余两边之和的最大值。 解:如图1,设∠B=60°,AC=1,令BC=r,AB=BC=y,则AB=y。 由余弦定理得 AC~2=AB~2 BC~2-2AB·BC·cosB。 即1~2=(y-x)~2 x~2-2(y-x)x·cos60°。 化简整理得  相似文献   

9.
平面几何中有切割弦定理:如图,圆O的切线PA(A为切点)与割线PBC满足关系PA2=PB·PC. 该定理在不等式求最值、求轨迹方程等方面有许多巧妙应用,如均值定理(a b)/(2)≥(ab)(a,b>0)的证明:在上图中割线PBC过圆心O时,设PB=a,PC=b,则PO=(a b)/(2),由切割弦定理PA=(ab),显然PO>PA,再结合a=b有(a b)/(2)≥(ab). 再举几例:  相似文献   

10.
圆中线段的比例式或等积式的证明,通常是应用平行线分线段成比例定理、射影定理、相似三角形的性质、相交弦定理及推论、切割线定理及推论来解决.例1已知,如图1,△ABC是圆O的内接三角形,圆O的直径BD交AC于E.AF⊥BD于F,延长AF交BC于G。求证:AB2=BG·BC.(1993年北京市中考题)分析要证明AB2=BG·BC,只须证这显然是要证明△ABG∽△CBA·由题意知BH是圆O的直径,且AF⊥BD,故连结AH可得∠1=∠D.又∠D=∠C,所以∠C=∠1,并且∠ABG=∠CBA是公共角.于是△ABG∽△CBA结论得进.(证明过程略)例2如图…  相似文献   

11.
1979年,首次全国中学数学竞赛二试的题六是:如图1,两圆O1,O2相交于点A,B,圆O1的弦BC交圆图1O2于点D,圆O2的弦BF交圆O1于点E,证明:(1)若∠CBA=∠FBA,则CD=EF;(2)若CD=EF,则∠CBA=∠FBA.证明连接AC,AD,AE,AF,则∠ACD=∠ACB=∠AEF,∠ADC=∠AFB=∠AFE,而有△ACD∽△AEF,从而有ACAE=CDEF,于是CD=EFAC=AE)AC=)AE∠CBA=∠FBA.  相似文献   

12.
本文试图利用等圆的一个简单性质性质在等圆中,相等(或互补)的圆周角所对的弦相等, 给出某些几何题的又一种解题途径. 举例如下: 例1 已知△ABC中,AB=AC,BD=CE,DE交BC于M.求证DM=EM. 证明;设△BN和∠CW的外接圆半径分别为R_1,R_2,则 BD/sin∠1=2R_1.EC/sin∠2=2R_2.  相似文献   

13.
定理 线段AB与CD垂直的充要条件是AC~2-AD~2=BC~2-BD~2. 证明 [1]必要性由勾股定理即可得出.下面证明充分性(图 1(1)),记∠AOC=α,∠AOD=β,应用余弦定理有  相似文献   

14.
程俊 《中等数学》2004,(5):19-19
第 4 4届IMO第四题 :设ABCD是一个圆内接四边形 .从点D向直线BC、AC和AB作垂线 ,其垂足分别为P、Q和R .证明 :PQ =QR的充分必要条件是∠ABC的平分线、∠ADC的平分线和AC这三条直线相交于一点 .现证明该命题对任意凸四边形均成立 .图 1证明 :如图 1 ,连结QR、QP、AD、DC .因为DR⊥AR ,AQ⊥QD ,所以 ,A、R、D、Q四点共圆 ,且AD为该圆直径 .故QR =ADsin∠QDR =ADsin∠BAC .同理 ,QP =DCsin∠ACB .由△ABC及正弦定理有sin∠BACsin∠ACB=BCAB.所以 ,QRQP=ADsin∠BACDCsin∠ACB=AD·BCDC·AB.故QR =Q…  相似文献   

15.
有些几何题,直接求几何量的大小或判断几何量之间的关系,比较困难,若作出辅助圆,就能避繁就简、化难为易.例1如图1,AB=AC=AD,∠DAC是∠CAB的k倍(k为实数),则∠DBC是∠BDC的().A.3k倍B.2k倍C.k倍D.都不对解析:以A点为圆心,以AB长为半径作辅助圆.因为∠DAC和∠CAB是⊙A的两个圆心  相似文献   

16.
1996年全国初中数学联合竞赛第二试第2题为:“设凸四边形ABCD的对角线AC、BD的交点为M,过点M作AD的平行线分别交AB、CD于点E、F,交BC的延长线于点O,P是以O为圆心OM为半径的圆上一点(位置如图所示),求证:∠OPF=  相似文献   

17.
容易证明如下定理: 定理如图,D为△ABC的边BC(或其延长线)上任一点,则BD/DC=AB·sin∠BAD/AC·sin∠CAD。证明:在△ABD与△ACD中,分别由正弦定理,得BD/in∠BAD=AB/sin∠BDA ①DC/sin∠CAD=AC/sin∠CDA 又∠BDA ∠CDA=180°(或∠BDA=∠CDA)。∴sin∠BDA=sin∠CDA ① ②,即得  相似文献   

18.
题目如图1,AB是⊙O的直径,过A、B引两条弦AD和BE,相交于点C. 求证:AC·AD+BC·BE=AB2 (1) 这是教材第38页中的例4,教材中已用割线定理给出了一种证法,还能给出其他的证法吗?对于此题能否作一些探究?  相似文献   

19.
1992年上海市初中升学考试试卷中有如下一道题: 如图(图略),已知在圆内接四边形ABCD中,AD≠AB,∠DAB=90°,对角线AC平分∠DAB。(1)求证:DC=BC;(2)设AD=a,AB=b,求AC的长。对于第(1)小题,比较简便的证法是用圆周角的性质和等弧对等弦定理来进行证明。证法一:∵AC平分∠DAB, ∴∠DAC=∠BAC, ∴(?)=(?),∴DC=BC。比较多的学生运用圆周角性质和等腰三角  相似文献   

20.
作圆妙解题     
例在△ABC中,AB一AC一7cm,点尸是BC边上的一点,A尸一scm,求B尸.Cj〕的值. 解法l如图1.作A AD土BC于点D, 丫AB一AC,八D 土BC,…BD一CD. :。B尸·CP一(BD+PD)(BD一尸D)一BD”一尸DZ一(AB“一AD“)一(八尸2一ADZ)=ABZ一A尸”一7“一52一24(emZ). 解法2如图2.以A为圆心、AB为半径作OA,过点A、尸作直径入了N, 由相交弦定理,得 B尸。CP一尸八沙。尸N 一(A尸+A」沙)(AN一A尸) =(7+5)(7一5) =24( emZ).BD尸C 图1图2 利用圆的一些性质解题,往往会收到事半功倍的效果.其关键是对图形仔细的分析,沟通与圆的内在的联系,进…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号