首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在一元一次方程的求解过程中,一些初学者由于忽视了变形前后的同解性,常会出现这样那样的错误.现就几类比较常见的病例,简要分析如下.一、解题格式不对致错例1解方程5x-2=3x 4.错解:5x-3x=4 2=2x=6=x=3.评析:这里混淆了方程的同解变形和代数式的恒等变形,解方程进行同解变形时不能用等号连等.二、移项不变号致错例2解方程5x 1=3x 7.错解:5x 3x=7 1.解得:x=1.评析:移项法则掌握不牢,方程中的项从等式的一端移到另一端时,一定要改变原来的符号.三、去括号忘记法则致错例3解方程5x-2(8-x)=6x-3(4-x).错解:5x-16-x=6x-12-x.移项、合并同类项,得-…  相似文献   

2.
1.误用连等例1 解方程3-2x=9. 错解3-2x=-2x=6=x=-3. 分析解方程时一定要注意同解变形与恒等变形的区别.这是两个不同的概念,方程3-2x=9和-2x=6的解虽然相同,但经过移项变形之后,等号两边代数式的值已经发生变化,导致出现了“6=x=-3”的矛盾情形.因此  相似文献   

3.
一、化简、求值例1化简26√2√+3√+5√.解:原式=2·2√·3√2√+3√+5√=(2√+3√)2-(5√)22√+3√+5√=(2√+3√+5√)(2√+3√-5√)2√+3√+5√=2√+3√-5√.例2若x4+1x4=2,求x+1x的值.解:由x4+1x4=2,配方,得(x2+1x2)2=4,所以x2+1x2=2.再配方,得(x+1x)2=4,所以x+1x=±2.二、分解因式例3分解因式x4+4.解:原式=x4+4x2+4-4x2=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2).□郭安才三、解方程(组)例4解方程2x2+3y2-4xy-6y+9=0.解:原方程可变形为2(x-y)2+(y-3)2=0,∵2(x-y)2≥0,(y-3)2≥0,∴只有x-y=0,y-3=0时,原方程成立.解得x=3,y=3.故原方程的解是x=3,…  相似文献   

4.
解一元一次方程有五个基本步骤,如果在某个环节中发生差错,就会导致解题错误.现以同学们作业中的常见错误为例,加以剖析,以引起初学者的注意. 一、书写格式错例1 解方程2x-5=7. 错解1 2x-5=7=2x=12=x=6. 错解2 原式=2x=7+5,2x=12,x=6.  相似文献   

5.
根据题型数值结构特征 ,选用恰当的化简技巧 ,是解决课本二次根式题的关键。一、变换所求 ,以简改繁例 1 已知 x=12 (7+5 ) ,y=12 (7- 5 ) ,求 x2 - xy+ y2 的值。 (课本 P2 2 0第 7题 )解 :当 x =12 (7+5 ) ,y=12 (7- 5 )时 ,原式 =(x- y) 2 + xy   =(5 ) 2 + 14 (7- 5 )   =112 。二、化简变形 ,化难为易例 2 已知 x=3+ 23- 2,y= 3- 23+ 2,求 xy+ yx的值。 (课本 P2 2 1B组第 3题 )解 :∵ x=- 7- 43,y=- 7+ 4 3,∴ x+ y=- 14 ,xy=1。∴原式 =x2 + y2xy =(x+ y) 2 - 2 xyxy    =(- 14 ) 2 - 2× 1=194。三、变形凑零 ,捷足先登…  相似文献   

6.
整体思想是一种重要的数学思想 ,其思维方法是指在思考问题时 ,把注意力放在问题的整体上 ,把一些看上去彼此独立 ,实质上紧密联系的量 ,作为一个整体来考虑 ,达到顺利解决问题的目的 ,现举例说明 ,供参考 .一、整体代入例 1 已知 x2 + x - 1=0 ,求 x3 + 2 x2 + 2 0 0 1的值 .分析 :若解方程 x2 + x - 1=0 ,求出 x,再代入 ,计算求值 ,思路自然 ,但计算繁难 .若将所求代数式分解变形 ,运用整体思想 ,则可化难为易 .解 :原式 =( x2 + x - 1) ( x + 1) + 2 0 0 2 .∴当 x2 + x - 1=0时 ,原式 =2 0 0 2 .二、整体固定例 2 化简 2 ( 5- 3)4 - 1…  相似文献   

7.
初学解一元一次方程,往往出现这样或那样的错误,现将一些常见错误归纳如下: 一、等号使用不正确例1 解方程4x=16. 错解 4x=16=x=4 分析把两个方程用等号联结起来这是初学解方程时常犯的错误。错误的原因是学生对方程变形理解不深.利用方程  相似文献   

8.
同学们在学习二次根式时,常会犯一些错误,现举例说明,供同学们参考. 1.化简x3+2x2y+xy2√. 错解:原式=x(x+y)2√=x+yx√. 分析:答案中根号外的x+y是一个整体,必须加括号. 正解:原式=x(x+y)2√=(x+y)x√. 2.把式子x-1x√中根号外的因式适当变形后移到根号内,并使原式的值不变. 错解:原式=x2√·-1x√=-x√. 分析:由公式a=a2√(a≥0)知,根号外的负因式要移进根号内且保持原式的值不变时,需在根号外添加一负号.如-4=-(-4)2√. 正解:由题意可知-1x>0,∴x<0. ∴原式=--x-1x√=-(-x2-1x √=--x√. 3.计算2√÷3√…  相似文献   

9.
1.忽视方程的同解 例1 解方程:(x-1)(x-2)=x-1. 错解:两边除以(x-1),得 x-2=1,x=3. 评注:忽视了方程的同解,方程两边除以(x-1)就可能导致丢根x=1.为此,把原式整理成(x-1)(x-2-1)=0. ∴x_1=1,x_2=3为所求. 例2 解方程:(x a)/(x-b) (x b)/(x-a)=2. 错解:两边同乘以(x-b)(x-a),有 (x a)(x-a) (x b)(x-b) =2(x-a)(x-b), 即2(x-a)x=(a b)~2. ∴当a b≠0时,x=(a b)/2.  相似文献   

10.
每年的中考与竞赛都有代数式求值这类题,并且这些题的解法各异,灵活多样.解这类题,若能抓住题目的特点,巧妙代入,就可达到事半功倍的效果.一、直接代入求值例1已知x=2-3√,求2-x(7+43√)x2-(2+3√)x+3√的值.解:把x=2-3√代入,得原式=2-(2-3√)(7+43√)(2-3√)2-(2+3√)(2-3√)+3√=3√(7+43√)(7-43√)-(2+3√)(2-3√)+3√=3√1-1+3√=1.二、先化简,后代入求值例2已知x=2√+2,求x3x-1-x2-x-1的值.解:原式=x3-(x-1)(x2+x+1)x-1=x3-(x3-1)x-1=1x-1.当x=2√+2时,原式=12√+2-1=12√+1=2√-1.三、先代值,后化简求值例3已知x=3√,y=2,那么代数式…  相似文献   

11.
一、利用对称式求解例 1 .已知 :a=15- 2 ,b=15 2 ,求a2 b2 7的值。解 :由题设可得 a b=2 5,ab=1。∴原式 =( a b) 2 - 2 ab 7=( 2 5) 2 - 2 7=2 5=5。二、定义法求解例 2 .已知 y=x- 8 8- x 1 8,求代数式 x yx - y- 2 xyx y - y x的值。解 :依据二次根式的定义 ,知 x- 8≥ 0 ,且 8- x≥ 0 ,∴ x=8,从而 y=1 8。∴原式 =x yx - y- 2 ( xy) 2xy( x - y )=( x - y ) 2x - y =x - y=8- 1 8=- 2 。三、用非负数性质求解例 3.如果 a b | c- 1 - 1 | =4a- 2 2 b 1 - 4,那么 a 2 b- 3c=。解 :将原条件式配方 ,得 ( a- 2 - 2 ) …  相似文献   

12.
一、运用算术平方根的性质例1 解方程解: 原方程无解. 二、运用配方法例2解方程x2-4x+5=0. 解:原方程可化为x2-4x+4=-1.  相似文献   

13.
1.题目 初中《代数》第三册78页第1(6)题是:解方程((x~2-1)/x)~2 7/2(x~2-1)/x 3=0。(1) 解:设(x~2-1)/x=y,于是原方程变形为y~2  相似文献   

14.
解分式方程的基本方法是在方程两边都乘以各分式的最简公分母,约分后化为整式方程而求解.但对于有些分式方程,若根据其结构特征,采用某些特殊的解法,可以使解题过程变得更简捷.下面我们来看几个具体的例子.一、移项合并法例1解方程6=x-x.x-6x-6解:移项,得x=x-6,即x=x-6.x-6x-6x-6因为x-6,所以x=1.≠0经检验,是原方程的根.x=12 x=x-2.x练习解方程x-2(答案:1)二、分子相等法例2解方程4=5.x 32x 3解:原方程可化为20=20,即5(x 3)4(2x 3)5(x 3)=4(2x 3).解得x=1.经检验,是原方程的根.x=1练习解方程2=3.x 12x 3(答案:-3)三、等式性质法例3解方程x-…  相似文献   

15.
解分式方程的基本思想是去分母转化为整式方程,常用的转化途径是在方程的两边都乘以最简公分母.对于某些问题,利用拆项方法,可使解分式方程的过程巧妙、简捷.例1.解方程xx-5=xx--62解:不难发现,xx-5=(x-x-5)5 5=1 x-55,x-2x-6=(x-x6-)6 4=1 x-46∴1 5x-5=1 x-46∴x-55=x-46∴5(x-6)=4(x-5)解之,得x=10经检验,x=10是已知方程的解.例2.解方程x-4x-5-xx--65=xx--87-xx--98解:已知方程化为(1 1x-5)-(1 x-16)=(1 x-18)-(1 x-19)∴1x-5-x-16=x-18-x-19∴-1x2-11x 30=x2-1-71x 72∴x2-11x 30=x2-17x 72解之,得x=7.经检验,x=7是已知方程的解.例3.解…  相似文献   

16.
因式分解的方法多种多样,现将其中最常用的九种变换方法例析如下.一、符号变换法例1把x2(x-4) 5x(4-x) 6(x-4)分解因式.分析:将5x(4-x)变形为-5x(x-4),即可提公因式(x-4)进行分解.解:原式=x2(x-4)-5x(x-4) 6(x-4)=(x-4)(x2-5x 6)=(x-4)(x-3)(x-2).二、指数变换法例2把xn 1 2xn xn-1分解因式.分析:以x的最低次幂xn-1为标准,将xn 1变形为xn-1·x2,xn变形为xn-1·x,即可提公因式xn-1进行分解.解:原式=xn-1·x2 2xn-1·x xn-1=xn-1(x2 2x 1)=xn-1(x 1)2.三、组合变换法例3把x2-6x-4y2 12y分解因式.分析:将题中各因式分组整理,第一项和第三项分为…  相似文献   

17.
拆项是数学学习中重要的一种解题方法 ,它指的是将代数式中的某项有意识地变形成两项或多项的和。灵活地应用这种方法 ,可很好地利用有关的公式、定理和已知条件 ,从而使解题简便易行。一、用于有理数计算例 1.计算 9999× 9999+19999。解 :原式 =(9999× 9999+9999) +10 0 0 0=9999× (9999+1) +10 0 0 0=10 0 0 0× (9999+1)=10 0 0 0 0 0 0 0。二、用于分解因式例 2 .分解因式 x3 +2 x2 - 5 x- 6。解 :原式 =(x3 +2 x2 +x) - (6 x+6 )=x(x+1) 2 - 6 (x+1)=(x+1) (x- 2 ) (x+3)。例 3.分解因式 x4 +x2 +2 ax+1- a2 。解 :原式 =(x4 +2 x2 …  相似文献   

18.
■一、有公因式不提例1 分解因式8x3 - 32xy.错解:原式=x(8x2- 32y).例2 分解因式4x2yz + 16y2.错解:原式=4(x2yz+ 4y2).评析:提取公因式时,既要提取相同字母的最低次幂,也要提取各项系数的最大公约数,因为公因式包括公因数,否则,都是不正确的.正解:1.原式=8x(x2- 4y).2.原式= 4y(x2z + 4y).■二、公因式提不尽例3 分解因式3x(m - n) - 6y(n - m).错解:原式=3[x(m -n) - 2y(n - m)]=3(mx - nx - 2ny + 2my).评析:公因式既可以是单项式也可以是多项式,n - m可变形为- (m - n),因此,上题中的公因式应为3(m - n).正解:原式=3x(m - n) + 6y( …  相似文献   

19.
<正>配方法就是将一个代数式变形为另一个代数式,使得新代数式中含有一个完全平方式.这种数学方法为解决某些初中数学问题提供了思路,成为解决问题的有效途径之一.一、一元二次方程中的应用例1解方程:x2+8x+7=0.解移项,得x2+8x=-7,配方,得x2+2×1×4x+42=-7+42,变形,得(x+4)2=9,所以x+4=士3,  相似文献   

20.
1.符号出错 例1分解因式一4m3+z6mZ一26m. 解原式-一Zm(2,2+sm一13). 2.系数出错 例2分解因式(2x十4)2一(护+Zx). 解原式一2(x十2)2一x(x+2) 一(x+2)(x十4). 3.指数出错 例3分解因式p3m一尸m. 解原式一尸,(尸3一1) 一尸‘(尸一1)(PZ+P+1). 4.有公因式不提 例4分解因式16一36护. 解原式一(4+6x)(4一6x). 5.提公因式不尽 例5分解因式4x一9护. 解原式一x(4一16xZ) 一x(2+4x)(2一4x). 6.书写结果不规范 例6分解因式(3a一4b)(7a一sb)+(1 la一12b)(7a一sb). 解原式一(7a一sb)·2·(7a一sb). 7.结果不是整式的积 例7分解因式a卜3+了.解原式一(去…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号