首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
经过研究,笔者现已得到:定理如果直角三角形的一个锐角平分线长与对边的比为2∶3,那么这个锐角为60°.已知:如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,且BD∶AC=2∶3,求证:∠ABC=60°.证明:设∠DBC=θ,BD=2a,由BD∶AC=2∶3,知AC=3a.在Rt△DBC中,∠C=90°,所以CD=2asinθ,BC=2acosθ,所以AD=(3-2sinθ)a.过点D作DE⊥AB于点E.  相似文献   

2.
例1如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D是BC的中点,DE⊥BC交边AC于点E,点P在射线AB上运动,点Q在AC上运动,且∠PDQ=90°.  相似文献   

3.
与角平分线有关的几何问题在各类考试(竞赛和中考)中屡见不鲜,解决这类问题时,若能通过巧添辅助线构造全等三角形常可使问题化难为易.例1如图,在△ABC中,∠BAC的平分线交BC于D,AC=AB BD,∠C=30°,则∠ABC的度数是(江苏省初中数学竞赛题)()A.45°B.60°C.75°D.90°解:延长AB到E,使AE=AC,连接DE,∵∠1=∠2,AD=AD,∴△AED≌△ACD(SAS).∴∠E=∠C=30°.又AE=AB BE,AC=AB BD,∴BE=BD.从而∠3=∠E.∴∠ABC=2∠E=60°.故选:B.反思:若在AC上截取AF=AB,同学们考虑怎样证明?例2如图,已知在△ABC中,AB>AC,AD为∠A的…  相似文献   

4.
文[1]、[2]、[3]等给出了外角平分线构成的三角形几个有趣的性质,本文得到定理如图,△DEF是△ABC三条外角平分线构成的三角形,设BC=a,CA=b,AB=c,2s=a+b+c,I为△ABC的内心,且DI=x,EI=y,FI=z,△ABC的外接圆和内切圆半径分别为R、r,则4sin2sin2sin2x A=y B=z C=R(1)首先给出一个引理.引理设I为△ABC的内心,则AD、BE、CF交于I点,且I为△DEF的垂心.略证∵?DEF是△ABC三条外角平分线构成的三角形,∴D、E、F为△ABC的旁心[4],显然AD、BE、CF为∠A、∠B、∠C的平分线,则它们交于I点;又∵2∠D AC=A,222∠E AC=B+C=π?…  相似文献   

5.
模型:如图1,△ABC中,AB=AC,D为BC上一点,以D为项点作∠EDF,使∠EDF=∠B,并且∠EDF的一边与AB交于E点。另一边与AC(或延长线)交于F点,则有△BDE∽△CFD。  相似文献   

6.
1一个相似模型图1模型:如图1,△ABC中,AB=AC,D为BC上一点.以D为项点作∠EDF,使∠EDF=∠B,并且∠EDF的一边与AB交于E点,另一边与AC(或延长线)交于F点.则有△BDE∽△CFD.证明因为AB=AC,所以∠B=∠C.又因为∠B=∠EDF,所以∠BED ∠BDE=∠BDE ∠FDC,所以∠BED=∠FDC.所以△BDE∽△CF  相似文献   

7.
性质 若直角三角形的直角边的长为a和b,斜边长为c,则a+b≤在c(当且仅当a=b时等号成立). 证法1 如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c,延长CB至D,使BD=AC=b,作ED⊥DC于点D,使ED=BC=a,  相似文献   

8.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

9.
顶角为20°的等腰三角形与顶角为100°的等腰三角形具有一系列类似的性质.本文予以介绍..1·1 在△ABC 中,∠A=20°,AB=BC=b,BC=a.求证:a~2 b~3=3ab~2.(1984年重庆市初中数学竞赛、杭州市初中数学竞赛)证明:如图1,作∠CBD=∠A=20°,点 D 在 AC  相似文献   

10.
设△ DEF 为锐角△ ABC 的垂足三角形,并设 BC = a,CA = b,AB = c; A EF = a0,FD = b0, DE = c0 . F分别设△ ABC 、△ DEF 、 E△ AEF 、△ BDF、△CDE B的外接圆半径、内切圆半径、  相似文献   

11.
一个几何命题经过细致的考察、变异、拓广 ,常可导出许多新的命题 ,用这种方法学习、研究几何问题 ,有助于洞察几何问题的本质 ,收到举一反三、触类旁通的效果 ,对培养我们良好的学风和思维方法有重要作风 .下面举例说明 .原题 如图 1 ,在△ABC中 ,AB=AC ,∠A=2 0° ,点D在AC上 ,∠CBD =6 0° ,点E在AB上 ,∠BCE =50°,求∠BDE的度数 .(答案 :3 0°)1 构造逆命题原题中抹去线段AE、AD ,延长DE和CB使之相交 .变题 1 在△ABC中 ,∠B =70°,∠C=80°,点D在AC上 ,∠CBD =4 0°,点E在AB上 ,∠BCE =3 0° ,求∠BDE的度数 …  相似文献   

12.
!BACED图6一、填空题(1 ̄3每题2分,4 ̄11每题3分,共计30分)1.如图1,线段AB和线段A′B′关于直线MN对称,则AA′⊥"""",BB′⊥"""",OA="""",AB=""!!.2.如图2,是轴对称图形,则相等的线段是!!!!,相等的角是!!!!.3.在△ABC中,∠C=90°,AB的垂直平分线交BC于D,若∠CAD=10°,则∠B的度数是!!!!.4.在△ABC中,AB=AC,AB的垂直平分线交AC于点F,垂足为E,△BFC的周长为20cm,AB=12cm,则BC的长为!!!!.5.如图3,已知∠BAC=130°,若MP和NQ分别垂直平分AB和AC,那么∠PAQ的度数是!!!!.6.点P是∠AOB内一点,点P关于OA、OB的对称点分…  相似文献   

13.
命题设E,F分别为正方形ABCD的边AB,BC上的点,则EF=AE FC的充要条件为∠EDF=45°.证明如图1,延长FC到点G,使得CG=AE,易证△DAE≌△DCG,从而DE=DG,∠ADE=∠CDG,且∠EDG=∠EDC ∠CDG=∠ADC=90°.在△DEF与△DGF中,DE=DG,DF为公共边:若EF=AE FC=FC CG=CG,则△DEF≌△DGF,∠EDF=∠GD  相似文献   

14.
熊斌 《中等数学》2014,(3):19-23
第一天 1.如图1,在锐角△ABC中,已知AB〉AC,∠BAC的角平分线与边BC交于点D,点E、F分别在边AB、AC上,使得B、C、F、E四点共圆.证明:△DEF的外心与△ABC的内心重合的充分必要条件是BE+CF=BC.  相似文献   

15.
1.运用点到直线的距离例1(2009年陕西)如图1,在锐角三角形△ABC中,∠BAC=45°,AB=4槡2,∠BAC的平分线交BC于D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.解延长BM交AC于点H,当BH⊥AC且MN⊥AB时BM+MN最小,此时由题意知∠BAD=∠CAD,AM=AM,∠AHM=∠ANM=90°,所以△AHM≌△ANM,所以MH=MN,BM+MN=BM+MH=BH.又由AB=槡4 2,∠BAC=45°得BH=4,即BM+MN的最小值为4.  相似文献   

16.
<正>几何综合题是各地中考热点问题之一.下面举例介绍常见的解题策略.一、原题重现如图1,Rt△ABC中,∠ACB=90°,AC=BC,点D,E分别在AB,AC的延长线上,点F在DE上,AF与BC相交于点G,FA=FD,连接BE,∠AFD=2∠ABE.  相似文献   

17.
设△ABC的三边BC=a,CA=b,AB=c,如图1,当∠A、∠B、∠C都小于120°时,F为△ABC的费尔马点,FA=u,FB=v,FC=w.则  相似文献   

18.
正1.运用点到直线的距离例1(2009年陕西)如图1,在锐角三角形△ABC中,∠BAC=45°,AB=4槡2,∠BAC的平分线交BC于D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.解延长BM交AC于点H,当BH⊥AC且MN⊥AB时BM+MN最小,此时由题意知∠BAD=∠CAD,AM=AM,∠AHM=∠ANM=90°,所以△AHM≌△ANM,所以MH=MN,BM+MN=BM+MH=BH.又由AB=槡4 2,∠BAC=45°得BH=4,即BM+MN的最小值为4.  相似文献   

19.
如图1,已知△ABC 中,AB=BC=1,∠ABC=90°,把一块含30°角的直角三角板 DEF 的直角顶点 D 放在 AC 的中点上(直角三角板的短直角边为DE,长直角边为 DF),将直角三角板 DEF 绕 D 点按  相似文献   

20.
一种纯几何证明方法。证明过程如下: 设△ABC中各边BC,AC和AB的长分别是a、b和c,o为内切圆之圆心,D,E,F均为切点,在BC的延长线上截取CH=AF,连BO,作OK⊥BO交BC于L点,又作CK⊥BC交OK于K点,连BK,因∠BOK=∠BCK=Rt∠,故B,K,C,O四点共圆,连CO则,∠COB+∠BKC=180°,又因∠1+∠2+∠3=90°,∠3+∠AOF=90°,所以∠1+∠2=∠AOF,∠COB+∠AOF=180°,于是  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号