首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The implementation of new content and pedagogical standards in science education in Israel as well as in other countries necessitates intensive, life-long professional development of science teachers. Here we describe a model for the professional development of chemistry teacher-leaders. In the first part of the paper, we describe a model for the development and change of chemistry teacher-leaders. In the second part of the paper, we present the assessment of teachers' change. It is suggested, that in order to become a leader, the teacher has to undergo several interrelated phases of development and changes, namely personal, professional, and social. In order to attain these changes, a two-year program was designed in which teachers were given opportunities to develop their content knowledge, pedagogical content knowledge, and their leadership abilities and skills. The assessment of teachers' professional development clearly showed that engaging teachers in a long-term professional development program changed their beliefs (personal change) regarding their role as chemistry teachers in general and their confidence to become leaders in particular. In addition, we observed that the teachers changed in their professional abilities as well as in their social behavior. We also report on the involvement of the teacher-leaders in activities in which leadership skills were implemented in attempting to reform chemistry education in Israel.  相似文献   

2.
Several studies have shown that high school science teachers base their teaching on what professors of college freshman science expect, and that, in some instances, advanced high school courses are needlessly similar to college freshman courses. In order to gain insight of college science professors' expectations and perceptions on selected goals and outcomes of science education, a survey instrument was developed and mailed to 123 heads/coordinators of freshman chemistry in U.S. state and land grant colleges and universities that offer a graduate degree program in chemistry. The results demonstrated that although the coordinators were positive about many science education goals and outcomes they did not value aspects related to societal issues, and no differences among them existed when the results were analyzed according to demographic subgroups such as age and teaching experience. They perceived high school graduates as possessing inadequate skills and perceived measures to improve precollege science education requiring collaboration of precollege and college faculty positively. The implications for science education were that college chemistry professors place values different from those of science educators on some pertinent goals and outcomes of science teaching, a situation that is not helpful to reforming precollege science education.  相似文献   

3.
Undergraduate college “science partners” provided content knowledge and a supportive atmosphere for K–5 teachers in a university–school professional development partnership program in science instruction. The Elementary Science Education Partners program, a Local Systemic Change initiative supported by the National Science Foundation, was composed of four major elements: 1) a cadre of mentor teachers trained to provide district-wide teacher professional development; 2) a recruitment and training effort to place college students in classrooms as science partners in semester-long partnerships with teachers; 3) a teacher empowerment effort termed “participatory reform”; and 4) an inquiry-based curriculum with a kit distribution and refurbishment center. The main goals of the program were to provide college science students with an intensive teaching experience and to enhance teachers'' skills in inquiry-based science instruction. Here, we describe some of the program''s successes and challenges, focusing primarily on the impact on the classroom teachers and their science partners. Qualitative analyses of data collected from participants indicate that 1) teachers expressed greater self-confidence about teaching science than before the program and they spent more class time on the subject; and 2) the college students modified deficit-model negative assumptions about the children''s science learning abilities to express more mature, positive views.  相似文献   

4.
A teacher professional development program for in-service elementary school science teachers, the Rice Elementary Model Science Lab (REMSL), was developed for urban school districts serving predominately high-poverty, high-minority students. Teachers with diverse skills and science capacities came together in Professional Learning Communities, one full day each week throughout an academic year, to create a classroom culture for science instruction. Approximately 80 teachers each year received professional development in science content and pedagogy using the same inquiry-based constructivist methods that the teachers were expected to use in their classrooms. During this four-year study, scientists and educators worked with elementary teachers in a year-long model science lab environment to provide science content and science pedagogy. The effectiveness of the program was measured using a mix of quantitative and qualitative methods that allowed the researchers to triangulate the findings from quantitative measures, such as content test and surveys, with the emerging themes from the qualitative instruments, such as class observations and participant interviews. Results showed that, in all four years, teachers from the REMSL Treatment group have significantly increased their science content knowledge (p?<?0.05). During the last two years, their gains in science content knowledge, use of inquiry-based instruction and leadership skills were significantly higher than those of the Control group teachers' (p?<?0.01, p?<?0.001 and p?<?0.05, respectively). Three themes resonated in the interviews with participants: science content knowledge growth, constructivist pedagogy and leadership skills.  相似文献   

5.
Following educational reform in Israel, teacher-leaders create and lead professional development communities (PDCs), which are professional learning communities with a focus on in-service professional development and/or improving pedagogical effectiveness. Interviews with 30 teacher-leaders and all four district-level program coordinators revealed that, prior to assuming the role, teacher-leaders developed their professional and leadership skills largely in a self-directed manner. They described their PDCs as cohesive and dedicated, cooperative, involving peer-learning, and as creating a knowledge bank of teaching methods and tools. PDCs enable teachers to advance projects within the school and affect school culture. Principals’ involvement with PDCs varied, with their usually considerable involvement very favorably regarded. This article describes these findings and discusses their implications for the professional development of teachers in the international context.  相似文献   

6.
采用问卷调查对参加河北省"国培计划"的小学科学骨干教师的专业发展现状进行了调查。调查结果表明:河北省小学科学骨干教师年富力强,整体教龄较长,但科学教龄较短;大多数教师专业学科背景缺乏,专业知识结构与能力存在缺陷;专业发展途径不够完善,缺乏专业发展规划指导;教学科研能力薄弱,参加学术会议和培训机会相对较少。针对此种状况提出了促进小学科学教师专业发展的若干建议。  相似文献   

7.
8.
The purpose of this study was to investigate high school teachers’ beliefs about inquiry instruction and determine how their beliefs influenced their use of inquiry after a professional development program. Thirty-six high school science teachers participated in this study. The professional development program consisted of a 2-week summer institute as well as academic year support. The summer program included discipline-specific content lessons that utilized inquiry-based instruction, pedagogical practice involving the use of a summer high school enrichment program, and reflection on this practice-teaching in content area groups. Both in-depth qualitative interview and written reflection data were collected as well as data from the teachers’ classroom implementation of inquiry. Based on the analysis of the teachers’ interviews and classroom enactments, the teachers were placed into four enactment categories: Integrated, Emerging, Laboratory-based, and Activity-focused. We used Windschitl’s (Rev Educ Res 72(2):131–175, 2002) four constructivist dilemmas as a framework to understand the teachers’ enactments. We describe the teachers’ beliefs and practices in each enactment category as well as the components of the professional development model that were important to making changes in the teachers’ practices. In the conclusion, we connect the enactment levels to the professional development experience and suggest future directions for professional developers to move teachers toward more integrated inquiry practices.  相似文献   

9.
The No Child Left Behind Act requires that all teachers be certified within the content areas that they teach. However, attracting and retaining highly qualified science teachers in rural school districts is particularly difficult due to limited resources and geographic and professional isolation. Science professional development programs could help improve inservice teachers’ understanding of concepts they are expected to teach, but such programs are often limited in rural areas. This study evaluates a unique distance learning, inquiry-based professional development course in physical science developed to meet the needs of central Appalachian middle school teachers. Instruction through hands-on inquiry investigations distinguishes this program from other distance learning programs. Preliminary findings from the pilot study reported in this paper reveal significant growth in 43 teachers’ content knowledge for six of nine temperature and heat concepts assessed in the course. Outcomes from the distance learning project are discussed as they relate to future research goals and implications for science professional development programs in rural regions.  相似文献   

10.
The current science education reform movement emphasizes the importance of professional development as a means of improving student science achievement. Reformers have developed a vision for professional development based upon intensive and sustained training around concrete tasks that is focused on subject‐matter knowledge, connected to specific standards for student performance, and embedded in a systemic context. Using data from a National Science Foundation Teacher Enhancement program called the Local Systemic Change initiative, this study employs hierarchical linear modeling to examine the relationship between professional development and the reformers' vision of teaching practice. The findings indicate that the quantity of professional development in which teachers participate is strongly linked with both inquiry‐based teaching practice and investigative classroom culture. At the individual level, teachers' content preparation also has a powerful influence on teaching practice and classroom culture. At the school level, school socioeconomic status was found to influence practice more substantially than either principal supportiveness or available resources. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 37: 963–980, 2000  相似文献   

11.
论化学教师的PCK结构及其建构   总被引:1,自引:0,他引:1  
教师专业发展的核心问题就是发展他们的PCK。化学教师的PCK主要包括基于化学科学理解的化学学科知识、关于学生理解化学的知识、关于化学课程的知识和化学特定课题的教学策略及表征的知识。教师的PCK是在实践中建构和发展的。PCK的发展是一个非线性的、螺旋发展的动态的过程。化学教师PCK建构的基本策略是:形成促进PCK发展的教学思维方式,提升对化学科学的理解水平,关注学生对于化学的理解,发展化学课程知识,提高整合转化能力,多渠道丰富PCK资源库。  相似文献   

12.
Researchers have shown a growing interest in science teachers’ professional knowledge in recent decades. The article focuses on how chemistry teachers impart chemical bonding, one of the most important topics covered in upper secondary school chemistry courses. Chemical bonding is primarily taught using models, which are key for understanding science. However, many studies have determined that the use of models in science education can contribute to students’ difficulties understanding the topic, and that students generally find chemical bonding a challenging topic. The aim of this study is to investigate teachers’ knowledge of teaching chemical bonding. The study focuses on three essential components of pedagogical content knowledge (PCK): (1) the students’ understanding, (2) representations, and (3) instructional strategies. We analyzed lesson plans about chemical bonding generated by 10 chemistry teachers with whom we also conducted semi-structured interviews about their teaching. Our results revealed that the teachers were generally unaware of how the representations of models they used affected student comprehension. The teachers had trouble specifying students’ difficulties in understanding. Moreover, most of the instructional strategies described were generic and insufficient for promoting student understanding. Additionally, the teachers’ rationale for choosing a specific representation or activity was seldom directed at addressing students’ understanding. Our results indicate that both PCK components require improvement, and suggest that the two components should be connected. Implications for the professional development of pre-service and in-service teachers are discussed.  相似文献   

13.
Scientist-teacher partnerships are a unique form of professional development that can assist teachers in translating current science into classroom instruction by involving them in meaningful collaborations with university researchers. However, few reported models aim to directly alter science teachers’ practices by supporting them in the development of curriculum materials. This article reports on a multiple case study of seven high school science teachers who attended an ongoing scientist–teacher partnership professional development program at a major Southeastern research university. Our interest was to understand the capacity of this professional development program for supporting teachers in the transfer of personal learning experiences with advanced science content and skills into curriculum materials for high school students. Findings indicate that, regardless of their ultimate success constructing curriculum materials, all cases considered the research grounded professional development supports beneficial to their professional growth with the exception of collective participation. Additionally, the cases also described how supports such as professional recognition and transferability served as affordances to the process of constructing these materials. However, teachers identified multiple constraints, including personal learning barriers, their classroom context, and the cost associated with implementing some of their curriculum ideas. Results have direct implications for future research and the purposeful design of professional development experiences through scientist-teacher partnerships.  相似文献   

14.
An Inquiry Learning Partnership (ILP) for professional development (PD) was formed between a university, science centre, and two urban school districts to offer 4–6th grade teachers specific science content and pedagogical techniques intended to integrate inquiry-based instruction in elementary classrooms. From pre/post content exams, PD surveys, focus group, and assessment data, teachers increased their science content knowledge, reported implementing inquiry practices in their classrooms and their students experienced modest gains on 5th grade standardized science achievement exams. While some teachers were transferring knowledge/skills gained in professional development to their classrooms, others encountered barriers to implementing PD. These obstacles included limited resources, time constraints, mandated curriculum pacing, language learning, and classroom management issues. Strategies to mitigate these barriers in order to maximize the impact of professional development need to be a priority in professional development reform.  相似文献   

15.
This study investigated the impact of teacher design teams as a professional development arrangement for developing technology integration knowledge and skills among in-service science teachers. The study was conducted at a secondary school in Tanzania, where 12 in-service science teachers participated in a workshop about technology integration in science teaching and worked in design teams to prepare technology-enhanced biology, chemistry and physics lessons. Through collaboration in design teams, teachers were able to make science animations using PowerPoint and record videos to use in their teaching. The designed lessons were taught in the classroom and reflected upon thereafter by all teachers. In order to determine the change in teachers’ technology integration knowledge and skills, data were collected before and after the professional development arrangement by using questionnaire, interview and observation data. Focus group discussion and reflection questionnaire data were used to assess teachers’ experience of working in design teams at the end of the professional development arrangement. Findings showed an increase in teachers’ technology integration knowledge and skills between pre- and post-measurements. Collaboration in design teams had the potential for teachers to share knowledge, skills, experience and challenges related to technology-enhanced teaching.  相似文献   

16.
This study focused on teachers’ transfer of a variety of teaching methods from a teaching module on nanotechnology, which is an example of a topic outside the science curriculum, to teaching topics that are part of the chemistry curriculum. Nanotechnology is outside the science curriculum, but it was used in this study as a means to carry out a change in the way chemistry teachers teach. The participants in the study included nine high school in-service chemistry teachers. Three research tools were used: (1) semistructured interviews that were conducted with the teachers, after they had finished teaching their nanotechnology module, and follow-up semistructured interviews that were conducted 2 years after the teachers had taught the nanotechnology module , and teachers’ assessment and evaluation of their own teaching method, determining how the nanotechnology modules influenced the students who learned according to this program. The data collection process continued for 5 years. Most of the teachers indicated that they continued teaching the nanotechnology module that they designed and all of them stated that they integrated the unique teaching methods into their teaching of chemistry. High efficacy beliefs were built based on the self-evaluation process that was part of the teachers’ professional development program. Teaching self-efficacy beliefs and organization efficacy beliefs was found to contribute to teachers’ sustainable changes. The findings in the current research are only limited to the topic of nanotechnology; however, we believe that similar results can be obtained for any modern scientific topic that is outside the high school science curriculum. We suggest that more research should be done to determine whether the same findings emerge by using the same approach but on another topic.  相似文献   

17.
Since A Nation at Risk was released in the 1980s, standards-based reform has been the most dominant trend in American educational policy, and the No Child Left Behind Act pushed the trend further by requiring states to develop rigorous curriculum standards. Though much has been said about these new standards, less has been said about whether or how well professional development helps teachers link their instruction to these standards. This study examined the impact of a professional development program for K-12 science teachers in helping teachers meet state curriculum standards. Seventy-five science teachers in Michigan participated in a 2-week summer workshop that used Problem-Based Learning for improving teachers’ content knowledge and pedagogical content knowledge. Researchers surveyed participating teachers about the change of teachers’ preparedness for standards-based teaching, their expectations to meet state curriculum standards, and whether their expectations were met. In addition, the usefulness of workshop activities was examined. Data analysis showed that to align teaching with state curriculum standards, participating teachers expected to learn instructional strategies and enhance science content knowledge through professional development, and by and large their expectations were well met. Collaboration with colleagues and facilitators helped teachers achieve their goals in terms of teaching within state curriculum standards. These findings have important implications for designing professional development to help teachers align instruction with curriculum standards.  相似文献   

18.
This study was conducted to investigate the continuation of technology use in science and mathematics teaching of the teachers who attended a professional development program between 2010 and 2012. Continuation of technology use was hypothesized to be affected by the professional development program and by personal, institutional, and technological factors. Twelve teachers and three school leaders participated in the study. Data was collected through interviews. Findings showed that the continuation of technology use differed for the teachers involved in the professional development program. While all teachers reported to have gained knowledge and skills through the professional development program and were positive about technology use in education, only some teachers continued the use of technology. The data revealed that despite the challenges that all teachers in the sample encountered when using technology in their teaching (such as large classrooms, problems with electricity supply, lack of time and lack of technology tools), the encouragement of school management was a critical factor in teachers’ continuation of technology use. Implications of the findings are discussed.  相似文献   

19.
Science learning environments should provide opportunities for students to make sense of and enhance their understanding of disciplinary concepts. Teachers can support students’ sense-making by engaging and responding to their ideas through high-leverage instructional practices such as formative assessment (FA). However, past research has shown that teachers may not understand FA, how to implement it, or have sufficient content knowledge to use it effectively. Few studies have investigated how teachers gather information to evaluate students’ ideas or how content knowledge factors into those decisions, particularly within the life science discipline. We designed a study embedded in a multi-year professional development program that supported elementary teachers’ development of disciplinary knowledge and FA practices within science instruction. Study findings illustrate how elementary teachers’ life science content knowledge influences their evaluation of students’ ideas. Teachers with higher levels of life science content knowledge more effectively evaluated students’ ideas than teachers with lower levels of content knowledge. Teachers with higher content exam scores discussed both content and student understanding to a greater extent, and their analyses of students’ ideas were more scientifically accurate compared to teachers with lower scores. These findings contribute to theory and practice around science teacher education, professional development, and curriculum development.  相似文献   

20.
Professional Conversations and Professional Growth   总被引:1,自引:0,他引:1  
A professional development program for 18 teachers was conducted over a two-year period. The participating teachers taught in intermediate schools (students aged 11–13) and secondary schools. The teachers worked collaboratively to improve their mathematics teaching, with encouragement to reflect on their practice but with minimal instruction from the researchers. Results, as defined by change in teaching practices, beliefs, and reflections, and student achievement, indicated that the collaborative program was particularly useful for experienced secondary school teachers but less useful for intermediate school teachers. We concluded that this type of professional development was most useful for teachers who had sufficient knowledge of mathematics; these teachers were able to focus on pedagogy and to draw connections between aspects of the mathematics they taught, without recourse to a specialist's advice. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号