首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A single phase of zirconium diboride(Zr B2)powder was successfully synthesized by sol-gel method in Zr-B-C-O system, using zirconium oxychloride(Zr OCl2·8H2O), nano-scale boron and sucrose(C12H22O11)as the starting materials and propylene oxide(PO)as complexing agent at a low temperature. Simultaneously, the experimental and theoretical studies of Zr B2 synthesized by boro/carbothermal reduction from novel sol-gel technology were discussed. The results indicated that the pure rod-like Zr B2 powder without residual Zr O2 phase could be obtained with a B/Zr molar ratio of 3.5 at 1 400℃ in argon atmosphere. Besides, in this study, a kinetic model for the Zr-B-C-O system producing Zr B2 by boro/carbothermal reaction was established based on thermodynamic analysis. It was also observed that, with the increase of reaction temperature, the reaction which produced Zr B2 powders changed from the borothermal reaction to boro/carbothermal reaction in the Zr-B-C-O system.  相似文献   

2.
The effects of the electro-deposition conditions on the crystal structure and the properties of electrolytic manganese dioxide(EMD) were investigated in this paper. The results show that EMD was γ-crystal, with sand-like rough interface. The optimal preparation conditions of EMD were 30 min deposition time, and p H=1.0 in Mn SO4-H2SO4 solution at 50 ?C. Surfactant(P1) was conducive to the uniform and stable surface of γ-Mn O2 film, the impedance and the specific surface area of the electrode modified with γ-Mn O2 increased by 21.4 times and 75.6 times, respectively. The redox reversibility and the resolution ratio of characteristic peaks with the modified electrode were significantly improved in the benzodiazepines electrochemical reaction. The achievement illustrated that the controllable synthesis of γ-Mn O2 film thickness was practical in electrochemical sensors, and the determination reliability of benzodiazepines was improved with γ-Mn O2 modified electrodes used in environment monitoring technology.  相似文献   

3.
The crystallization process of Fe78ZrTBls (at%) amorphous ribbon was investigated by Xray diffraction (XRD), differential scanning calorimetry and scanning electron microscopy (SEM). The fully amorphous structure of asquenched (Aq) ribbons was confirmed by XRD pattern. The saturation magnetization (Ms) and Curie tem perature of the Aq ribbon were measured as 124.3 (A.mZ)&g and 305 ℃ with vibrating sample magnetometer (VSM), respectively. When the ribbons was annealed at 550 ℃ near the first onset temperature (Txl = 564.9 ℃), the Ms was increased by 17 %, which was caused by the formation of a dual phase structure. The isothermal crystallization kinetics and crystallization mechanism of primary ctFe phase in the dual phase structure were studied by Arrhenius and JohnsonMehlAvramiKolmogorov equations respectively. The results showed that the crystallization of Fe phase was a diffusioncontrolled surface nucleation growth process, and the nucleation rate decreased with longer crystallization time.  相似文献   

4.
The influence of calcination temperature on TiO2 nanotubes' catalysis for TiO2/UV/03 was investigated. TiO2 nanotubes (TNTs) were prepared via the sol-gel method and calcined at 300--700 ℃, which were labeled as TNTs-300, TNTs-400, TNTs-500, TNTs-600 and TNTs-700, respectively. TNTs were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). It is found that TNTs calcined at 400 ℃ showed the best thermal stability. When the calcination temperature increased from 400 ℃ to 700 ℃, the special structure of tubes was destroyed and gradually converted into nanorods and/or particles. The transformation from anatase to rutile occurred at 600 ℃, and the rutile phase was enhanced when the calcination temperature was increased to over 600 ℃. The calcina- tion temperature's influence on TNTs' adsorption activity for for TiO2/UV/O3 was investigated in landfill leachate solution chemical oxygen demand (COD) and catalytic activity In landfill leachate solution, the adsorption activity of COD decreased in the reduced order of TNTs-300, TNTs-400, TNTs-500, TNTs-600 and TNTs-700. In photocatalytic ozonation, TNTs-400 showed the best catalytic activity while TNTs-700 exhibited the worst. In other three processes, the COD removal of TNTs-300/UV/O3 was higher than those of TNTs-500/UV/O3 and TNTs-600/UV/O3 in the first 20 rain, and then became close to those of the latter two in the following 40 rain. Compared with TNTs-300 and TNTs- 400, TNTs-600 had the best anti-fouling activity, while TNTs-500 and TNTs-700 had lower anti-fouling activity than the former three. In photocatalytic ozonation, the calcination temperature of 400 ℃ was appropriate when TNTs were obtained at the synthesis temperature of 105 ℃.  相似文献   

5.
Reaction mechanisms of SO2 with O3 and H2O2 were investigated using quantum chemistry ab initio methods. Structures of all reactants, products, and transition states were optimized at the B3LYP/6-311G+(3df,2p) level, and energy calculations were made at the G2M level. SO2 reactions with O3 and H2O2 occurred by O-abstraction and OH-abstraction by SO2, respectively, at length forming SO3+O2 (3Eg) and H2SO4. For SO2+O3 reactions the barrier height was predicted to be 9.68 kcal/mol with a rate constant of 3.61 × 10^-23 cm^3/(molecule.s) at 300 K, which is below the experimental upper limit. The rate constant predicted for this reaction accords well with the one provided by National Institute for Standards and Technology (NIST) in 250-500 K. For SO2+H2O2 reactions the barrier height was predicted to be 62.39 kcal/mol with a rate constant of 2.48× 10^-61 cm^3/(molecule.s) at 300 K.  相似文献   

6.
A series of PtCuCeMgAl quintuple hydrotalcite-like compounds with different Ce contents were synthesized by one-pot method. After calcining and reduction, CeO_2-modified Mg(Al)O-supported Pt–Cu alloy catalysts were obtained. To understand the effect of Cu and Ce, the structure and physico-chemistry properties of the catalysts were characterized and analyzed, and the catalytic behaviors were investigated in a direct dehydrogenation of propane to propene. The results show that the Pt~(4+), Cu~(2+), and Ce~(3+) ions can be incorporated into the brucite-like layers and the Ce content significantly affects the interaction strength between Pt and Cu and the dehydrogenation performance of propane. Under the reaction conditions, the highest propane conversion(45%) with 89% selectivity to propene and a 40% propene yield were achieved with a 0.3 wt% Ce-modified PtCu/Mg(Al)O catalyst. The improved catalytic performance is related to the easy formation of Pt–Cu alloy phase, excellent resistance to sintering, and coke deposits of active components modified by CeO_2.  相似文献   

7.
ZiO2 was prepared by the hydrolyzation method in (NH4)2SO4-modified TiCl4 solution, and TiO2 photocatalysts were obtained by accelerating the precipitation of TiO2 powder in a high-temperature water bath. The photocatalysts were characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Raman spectrum and UV-Vis (Ultraviolet-Visible) spectrometry techniques, and the photocatalytic activity in phenol-contaminated water was investigated. The results showed that photocatalysts calcined at 400 ℃ had a specific surface area of 138.2 m^2/g and an average particle size of 9 nm, and a significant increase in thermal stability of anatase phase. At the calcination temperature of 700 ~C, the crystal form of TiO2 started to change into rutile (anatase: 97%, rutile: 3%). The activity of TiO2 photocatalysts prepared with (NH4)2SO4-modified TIC14 solution was markedly stronger than that without (NH4)2SOg-modified TIC14 solution. Maximal photocatalytic activity was observed at the mole ratio of Ti:(NH4)2SO4= 1:2, the water-bath temperature of 90℃ and the calcination temperature of 700 ℃.  相似文献   

8.
Different ambient conditions for the synthesis of Ag(Nb0.8Ta0.2)O3 ceramics were investi- gated. The Ag(Nb0.8Ta0.2)O3 powder was synthesized at 950 ℃ under different ambient conditions, and then pressed into disks and sintered between 1060 ℃ and 1100 ℃ respectively. Samples were investigated by X-ray diffraction, scanning electron microscopy and dielectric measurement. The results show that perovskite Ag(Nb0.8Ta0.2)O3 powder was easier to be synthesized in air than in vacuum at 950℃. Grain size of ceramic samples sintered in air was uniform (about 1 μm) and its dielectric loss was small for its high density. However, the samples decomposed greatly and ceramics could hardly be densified when sintered in vacuum, Thus,. higher atmospheric pressure and oxygen atmosphere would benifit the synthesis of Ag (Nb0.8Ta0.2)O3, and suppress its decomposition at high temperature.  相似文献   

9.
Chemical coprecipitation was used to produce ultrafine and easily sinterable Y2O3-stabilized and (Y2O3, MgO)-stabilized ZrO2 powders. Six precipitation processes for preparation of ZrO2-based ultrafine powders were designed separately, meanwhile different techniques used to control the agglomeration formation were proposed. By means of TEM, SEM, Raman spectroscopy and IR spectroscopy, the mechanisms of agglomeration control in the precipitation processes and post-precipitation and drying process were investigated. The experimental results show that adding appropriate anion surface active agents (such as PAA1460) or polymer (PEG1540 matching with PEG200) in aqueous solution systems during precipitation processes could reinforce charge effect and location effect for gel particles interface. Adding wetting agents to wet gels washing with distilled water during drying process could change interface structure of gel particles and decrease surface tension between gel particles. The agglomeration control in the precipitation, post-precipitation and drying processes had remarkable influence on the characteristics of powders. By adding various macromolecules in the processes, the agglomeration state could be controlled efficiently, and the characteristics of powders were improved.  相似文献   

10.
BaFe12O19 powders with nanocrystaUine sizes were produced by sol-gel auto-combustion method. The precursors were prepared under the molar ratios of citric acid to the metal nitrate of 0.5, 1.0 and 1.5. Appropriate ethylene diamine (C2H8N2) was added in order to adjust pH of 7. The ions distribution of citric acid at different pH explains the effect of citric acid in the starting solution. The XRD patterns of the as-burnt powders and annealing powders show different phases for different citric acid content. In addition, the lattice constants (a, c) derived from X-ray diffraction pattern were changed from 0.58881 nm to 0.58997 nm and 2.32057 nm to 2.32296 nm respectively. The data from VSM indicated that the powder with high citric acid content took on good magnetic properties. Pure single BaFe12O19 of the specific maximum magnetization M(1 T)≈ 49.73 Am^2/kg, the specific remanent magnetization Mr ≈ 30.77 Am^2/kg and the coercive force He≈ 467 kA/m was produced when the molar ratios of citric acid to the metal nitrate was 1.5.  相似文献   

11.
Nanostructures enhance phonon scattering and improve the figure of merit of thermoelectric materials. Nanosized CoSb3 skutterudite was synthesized by solvothermal methods using CoCl2 and SbCl3 as the precursors. A "two-step" model was suggested for the formation of CoSb3 based on the X-ray diffraction analysis. The first step is the formation of cobalt diantimonide in the earlier stage during the synthesis process. Diantimonide was then combined with antimony atoms to form the skutterudite structured triantimonide, CoSb3, in the later stage of the synthesis process as the second step. The synthesized CoSb3 powders consist of irregular particles with sizes of about 20 nm and sheets of about 80nm.  相似文献   

12.
The extractive reaction process of oxygen-working solution-water three-phase system for the production of hydrogen peroxide by the anthraquinone method was investigated in a sieve plate column of 50 mm in internal diameter. The oxidation reaction of anthrahydroquinone in the working solution with oxygen and the extraction of hydrogen peroxide from the working solution into aqueous phase occurred simultaneously in the countercurrent mode. The agitating effect caused by gaseous phase made the droplets of the dispersed phase become smaller, thus, increasing the liquid-liquid interfacial contact areas and resulting in the improvement of the mass transfer velocity. Results showed that the gas-agitation had a beneficial effect on the extraction of hydrogen peroxide from the working solution into the aqueous phase: the concentration of hydrogen peroxide in the raffinate decreased with the increase of the gaseous superficial velocities: and the concentration of H2O2 in the raffinate increased with the increase of the dispersed phase superficial velocity at the same superficial velocity of the gaseous phase. In the G-L-L extractive reaction process, with the increase of the gaseous superficial velocities, both the conversion of the anthrahydroquinone oxidation and the extraction efficiency of hydrogen peroxide first increased significantly, then increased gradually.  相似文献   

13.
The influence of calcination temperature on TiO2 nanotubes' catalysis for TiO2/UV/O3 was investigated. TiO2 nanotubes (TNTs) were prepared via the sol-gel method and calcined at 300-700℃, which were labeled as TNTs-300, TNTs-400, TNTs-500, TNTs-600 and TNTs-700, respectively. TNTs were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). It is found that TNTs calcined at 400 ℃ showed the best thermal stability. When the calcination temperature increased from 400 ℃ to 700 ℃, the special structure of tubes was destroyed and gradually converted into nanorods and/or particles. The transformation from anatase to rutile occurred at 600 ℃, and the rutile phase was enhanced when the calcination temperature was increased to over 600 ℃. The calcina-tion temperature's influence on TNTs' adsorption activity for chemical oxygen demand (COD) and catalytic activity for TiO2/UV/O3 was investigated in landfill leachate solution. In landfill leachate solution, the adsorption activity of COD decreased in the reduced order of TNTs-300, TNTs-400, TNTs-500, TNTs-600 and TNTs-700. In photocatalytic ozonation, TNTs-400 showed the best catalytic activity while TNTs-700 exhibited the worst. In other three processes, the COD removal of TNTs-300/UV/O3 was higher than those of TNTs-500/UV/O3 and TNTs-600/UV/O3 in the first 20 min, and then became close to those of the latter two in the following 40 min. Compared with TNTs-300 and TNTs-400, TNTs-600 had the best anti-fouling activity, while TNTs-500 and TNTs-700 had lower anti-fouling activity than the former three. In photocatalytic ozonation, the calcination temperature of 400 ℃ was appropriate when TNTs were obtained at the synthesis temperature of 105 ℃.  相似文献   

14.
Using SnxTi1-xO2 as carriers, CuO/Sn0.9Ti0.1O2 and CuO/Sn0.7Ti0.3O2 catalysts with different loading amounts of copper oxide (CuO) were prepared by an impregnation method. The catalytic properties of CuO/Sn0.9Ti0.1O2 and CuO/Sn0.7Ti0.3O2 were examined using a microreactor-gas chromatography (GC) NO CO reaction system and the methods of BET (Brun- auer-Emmett-Teller), TG-DTA (themogravimetric and differential thermal analysis), X-ray diffraction (XRD) and H2-temperature programmed reduction (TPR). The results showed that NO conversions of Sn0.9Ti0.1O2 and Sn0.7Ti0.3O2 were 47.2% and 43.6% respectively, which increased to 95.3% and 90.9% at 6 wt% CuO loading. However, further increase in CuO loading caused a decrease in the catalytic activity. The nitrogen adsorption-desorption isotherm and pore-size distribution curve of Sn0.9Ti0.1O2 and Sn0.7Ti0.3O2 represented type IV of the BDDT (Brunauer, Deming, Deming and Teller) system and a typical mesoporous sample. There were two CuO diffraction peaks (2θ 35.5° and 38.7°), and the diffraction peak areas increased with increasing CuO loading. TPR analysis also detected three peaks (α, β and γ) from the CuO-loaded catalysts, suggesting that the α peak was the reduction of the highly dispersed copper oxide, the β peak was the reduction of the isolated copper oxide, and the γ peak was the reduction of crystal phase copper oxide. In addition, a fourth peak (δ) of the catalysts meant that the SnxTi1-xO2 mixed oxides could be reductive.  相似文献   

15.
Aluminum nitride (AlN)/borosilicate glass composites were prepared by the tape casting process and hot-press sintered at 950 ℃ with AIN and SiO2-B203-ZnO-Al2O3-Li2O glass as starting materials. We characterized and analyzed the variation of the microstructure, bulk density, porosity, dielectric constant, thermal conductivity and thermal expansion coefficient (TEC) of the ceramic samples as a function of AIN content. Results show that AIN and SiO2-B2O3-ZnO-Al2O3-Li2O glass can be sintered at 950 ℃, and ZnAI204 and Zn2SiO4 phase precipitated to form glass-ceramic. The performance of the ceramic samples was determined by the composition and bulk density of the composites. Lower AlN content was found redounding to liquid phase sintering, and higher bulk density of composites can be accordingly obtained. With the increase of porosity, corresponding decreases were located in the dielectric constant, thermal conductivity and TEC of the ceramic samples. When the mass fraction of AlN was 40%, the ceramic samples possessed a low dielectric constant (4.5-5.0), high thermal conductivity (11.6 W/(m.K)) and a proper TEC (3.0× 10^-6 K^-1 which matched that of silicon). The excellent performance makes this kind of low temperature co-fired ceramic a promising candidate for application in the micro-electronics packaging industry.  相似文献   

16.
Bubble formation in an opposite-flowing T-shaped microchannel with 40 μm in depth and 120 μm in width was real-time visualized and investigated experimentally by means of a high speed camera. N2 bubbles were generated in glycerol-water mixtures with different concentrations of surfactant sodium dodecyl sulfate (SDS). And the images were captured by the high speed camera linked to a computer. Results indicated that the bubble formation process can be distinguished into three consecutive stages, i.e., expansion, collapse and pinching off. The bubble size decreases with the increase of liquid flow rate and viscosity of liquid phase as well as the decrease of gas flow rate. The surface tension of the liquid phase has no measurable influence on the bubble size. Moreover, a new approach to predicting the size of bubbles formed in the T-shaped microchannel is proposed. And the predicted values agree well with the experimental data.  相似文献   

17.
Nano-TiO2 powders with pure anatase sturcture were prepared by the method of precipitation-solution-gelation,using H2TiO3,hydrogen peroxide and ammonia as reactants.Active red X-3B dye solution was selected as a model pollutant for the photocatalysis degradation experiments,The effects of grain sizes,dosage and microostructure of nano-TiO2 on itsphotocatalysis properties were studied.The results show that photo-activity of the nano-TiO2 is enhanced with the grain sizes reducing or dosages increasing of nano-TiO2,Howerver,excess increase in nano-TiO2 concentration is not advantageous to the enhancement of the photo-activity.Anatase TiO2 demonstrated a higher photo-activity than rutile TiO2,The dye solution hardly degraded without nano-TiO2 powders being added into it or under sunlight irradiation.  相似文献   

18.
Study on Potassium Fluoaluminate Eutectic Flux   总被引:2,自引:0,他引:2  
In this study, Noeolok eutectic flux, used widely in the process of the brazing of aluminum and its alloy, was prepared by the reaction between AI(OH)3/KOH resolution and HF. A series of KF-A1F3 euteetic productions at various reaction temperatures were prepared. The melting points of the products were measured by differential thermal analysis (DTA), and the composites were characterized by X-ray diffraction (XRD).The results suggest that the temperature control is important to produce an ideal flux consisting of K2A1F5 , H2O and KA1F4 , with a low melting point of 560 ℃ ,which is suitable for the brazing of aluminum and its alloy as the aluminum fluxes.  相似文献   

19.
Chemical absorption of CO2 into aqueous slurries of Ca(OH)2 was studied in a stirred thermostatic reactor. The influence of solid loading and stirring speed on absorption rate were investigated experimentally, and the results show that the enhancement factor increases with particle content due to the increase of reactive particles in the gas-liquid interfacial region. The absorption process was controlled by the diffusion of gas molecules in slurry. The influence of stirring intensity on enhancement factor is an integration of gas-liquid and liquid-solid mass transfer variation. A novel prediction model of enhancement factors was proposed with the partition of interface into two various zones, and the prediction values by the presented model are in agreement with the experimental data.  相似文献   

20.
A novel reversible photochromic nanocomposite film based on a hybrid inorganic-organic matrix in which heteropolyacid H4SiW12O40 (SiWA) was entrapped in Si-O-Ti network was prepared. Structure, photochromic behaviors and mechanism of the film were investigated by means of infrared spectroscopy (IR), ultraviolet-visible (UV-Vis) absorption spectra and electron spin resonance (ESR). The results showed that heteropolyanion i.e. SiW12O^4- 40 (SiW12), maintained a Keggin structure in the film and there was a strong interaction between anion SiW12 and cation R-NH^+3 (R=link of hybrid composite). The photochromic properties of the composite film originated from reversible charge transfer between the anions and cations. Under UV irradiation, the anion would be reduced via one-electron step with simultaneous oxidation of the cation, accompanied by a color change from colorless to blue. Bleaching could occur when the film was in contact with ambient air or 02 in the dark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号