首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
题目:如图1在△ABC中,DE∥BC分别交AB、AC于D、E两点,过点E作EF∥AB交BC于点F,请按图示的数据计算.(1)求平行四边形DBEF的面积S,(2)求△EFC的面积S1,(3)求△ADE的面积S2,(4)发现的规律是什么?解:(1)S=BF×3=2×3=6.(2)S1=12CF×3=12×6×3=9.(3)因为:DE∥BC,EF∥AB.所以四边形DBFE是平行四边形所以DE=BF=2,所以∠ADE=∠ABC.因为∠A=∠A,所以△ADE~△ABC.  相似文献   

2.
平行四边形有许多重要的性质 ,灵活地应用这些性质 ,可以解决许多问题。因此 ,解题时应根据题目的特征 ,巧妙地将原图形进行加工 ,使之构成平行四边形 ,从而打开解题的思路。下面举例说明。例 1 .如图 1 ,在△ ABC中 ,AB= AC,在 AB上取D点 ,在 AC延长线上取 E点 ,使CE=DB,连结 DE交 BC于 G点 ,求证 :DG=GE。分析 :过 D点作 DF∥ AE,连结 CD、FE,得到四边形 DFEC,若四边形 DFEC为平行四边形 ,则命题得证。从 DF∥ AE,知∠ACB=∠ DFB,∵∠ B=∠ ACB,∴∠B=∠DFB,∴ DB=DF,再由已知 DB= CE,推知 DF=CE,∴四边形 …  相似文献   

3.
一、将四边形问题转化为平行四边形问题例 1.已知 :四边形 ABCD中 ,AB=DC,AC=BD,且 AD≠BC。求证 :四边形 ABCD是等腰梯形。分析 :欲证此四边形为等腰梯形 ,可由定义来证明。从已知条件可看出 ,只要证明AD∥ BC即可。由此联想到构造平行四边形即可证得。证明 :过点 D作 DE∥ A B交BC于点 E,则∠ ABC=∠ DEC。∵ AB=DC,AC=DB,BC=CB,∴△ ABC≌△ DCB。∴∠ ABC=∠ DCB,∠ DEC=∠ DCB。∴ AB=DC=DE,∵ AB∥ DE,∴四边形 ABED是平行四边形 ,∴ AD∥ BC。又∵ AD≠ BC,∴四边形 ABCD是等腰梯形。二、将四…  相似文献   

4.
巧添辅助圆     
许多几何问题,若能恰当添出辅助圆,充分利用圆的丰富性质,便能获得简捷巧妙的解法. 例1 在△ABC中,∠ABC=∠C,∠A=100°,BE是∠B平分线,求证:AE+BE=BC.图1证明 作△ABE的外接圆交BC于D,连结ED.∵∠A=100°,AB=AC,∴∠ABC=∠C=40°.又∵BE平分∠ABC,∴∠EBD=20°,AE=DE,∴AE=DE.又∵四边形ABDE为圆内接四边形,∴∠DEC=∠ABC=40°,∴∠DEC=∠C.∴DE=DC,∴AE=CD.∵∠BDE+∠A=180°,∠A=100°,∴∠BDE=80°,∴∠BED=80°,∴BE=BD,∴BC=BE+AE. 例2 已知等腰梯形ABCD中,AD∥BC.AD=a,BC=b,AB=CD=…  相似文献   

5.
定理 1:若△DEF是△ABC的垂足三角形,则△DEF的三边长分别为acosA、bcosB、CcosC.(如图1) 证明:因为BE⊥AC,CF⊥AB,所以∠BEC=∠CFB=90°,所以B、C、E、F四点共圆.所以∠AEF=∠ABC,又因为∠EAF=∠BAC.所以B△AEF∽△ABC,所以EF/BC=AE/AB,在Rt△ABE中,cosA=AE/AB,所以EF/BC=cosA,所以,EF=acosA,同理可得DF=bcosB,DE=ccosC  相似文献   

6.
20 0 3年北京市中考题第 2 2题 :如图 1 ,在 ABCD中 ,点E、F在对角线AC上 ,且AE =CF .请你以F为一个端点 ,和图中已标明字母的某一点连成一条新线段 ,猜想并证明它和图中已有的图 1某一条线段相等 (只须证明一组线段相等即可 )连结 :     ;猜想 :     =     ;证明 :分析   若连结BF ,则可证明BF =DE ;也可连结DF ,证明DF =BE .证明   连结BF ,∵四边形ABCD是平行四边形 ,∴AD =BC ,AD ∥BC ,∴∠DAE =∠BCF ,又AE =CF .∴△ADE ≌△CBF(SAS) ,∴BF =DE .点评 :本题所给出的图形是一个平行四边形中…  相似文献   

7.
学习了《解直三角形》一章之后,我们还可以用三角函数知识证明一些几何题。 例1 如图1.在△ABC中,AB=AC,D为BC边上任意一点,DE⊥AB,DF⊥AC,CG⊥AB,垂足分别为E、F、G。求证:DE+DF=CG。 证明 ∵ AB=AC, ∴ ∠ABC=∠ACB=α。  相似文献   

8.
一、证明两条线段相等例1如图1,AD∥BC,若以梯形ABCD的边AB和对角线AC为边作ABEC,连结DE交BC于F.求证:DF=EF.略证:过点D作DG∥AB交BC于G,连结GE,则四边形ABGD为,∴ABDG.∵四边形ABEC是,∴ABCE,∴DGCE,∴四边形DGEC为,∴DF=EF.二、证不等量关系例2如图2,AD∥BC,BE=CF,AB=DC.求证:EF>BC.略证:过点B、F分别作CF和BC的平行线交于G,连结GE交BC于H,则BE=CF=BG,∠1=∠2=∠3.∴△BEG为等腰三角形,∴BH⊥GE,∴GF⊥EG,故在Rt△GEF中,EF>GF,即EF>B…  相似文献   

9.
程俊 《中等数学》2004,(4):17-17
题目 在锐角△ABC中 ,AD是∠BAC的内角平分线 ,点D在边BC上 ,过点D分别作DE⊥AC、DF⊥AB ,垂足分别为E、F ,连结BE、CF ,它们相交于点H ,△AFH的外接圆交BE于点G .求证 :以线段BG、GE、BF组成的三角形是直角三角形 .( 2 0 0 3,IMO中国国家集训队选拔考试 )图 1证明 :如图1 ,作DG′⊥BE于G′ ,AM⊥BC于M ,连结FG′.记∠ABC =α ,∠ACB =β,则BM =AMcotα ,CM =AMcotβ.由已知得BF =DFcotα,CE =DEcotβ ,DE =DF ,AF =AE .故 BFCE=tanβtanα=BMCM.因此 ,BF·CM·AECE·BM·AF=1 .在△ABC中 ,由…  相似文献   

10.
成果集锦     
直角三角形的一个充要条件黑龙江省绥化市北林区五中 王 航  定理 在△ABC中,CD平分∠C ,则∠C =90°的充要条件是1AD2 1BD2 =2CD2 .①证明:如图,作BE∥AC ,AF∥BC ,分别交CD的延长线于点E、F ,则有CDDE =ADDB =DFCD .若∠C =90°,则∠CBE =∠CAF =∠C =90°,∠BCE =∠ACF =45°,BC =BE ;AC =AF ,于是由DF =ADDB·CD知2AC2 =AC2 AF2 =CF2 =(CD ADDB·CD) 2 ,类似得 2BC2 =(CD DBAD·CD) 2 .以上两式相加,注意到AC2 BC2 =AB2 ,AD DB =AB ,即得2AB2 =CD2 ·AB2 ( 1AD2 1BD2 ) ,即…  相似文献   

11.
<正>题目(2016年湖州中考题)如图1,在等腰△ABC中,BC=7,AB=AC=4,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.将△ACD沿着AD所在直线折叠,使得点C落在点E处,AE与BC交于点M,连结BE,得到四边形ABED,则BE的长是()  相似文献   

12.
在证明题中,常会出现二倍角问题,此类问题往往有一定难度,需要认真分析已知与结论之间的联系,添加适当的辅助线,从而化难为易.现举例说明. 一、作倍角的平分线例1 已知:如图1,在△ABC中,∠B=2∠A,AB=2BC.求证:△ABC是直角三角形. 证明:作∠ABC的平分线BD交AC于点D,取AB的中点E,连结DE. ∵∠ABC=2∠A,∠ABC=2∠1=2∠2,∴∠A=∠1=∠2.即△ABD为等腰三角形.∵E为AB边中点,∴DE⊥AB.∵BE=12AB=BC,∠1=∠2,BD=BD,∴△BDE≌△BDC.∴∠BCD=∠BED=90°.即△ABC为直角三角形.二、构造倍角的等角…  相似文献   

13.
不少几何题,虽然在给定的图形中没有明显的全等三角形,但我们可根据题目的特征巧妙地构造全等三角形,从而找到证题的思路. 一、平移法例1 已知△ABC中,AB=AC,E在AB上,F在AC的延长线上,且BE=CF,EF交BC于D,求证:DE=DF 分析:欲证DE=DF,图中无明显的全等三角形,这时可考虑去构造,过E作EG∥AF,交BC于G,只须证△DCF(?)△DGE即可.  相似文献   

14.
1 一个假命题命题:任一个三角形是等腰三角形.已知:△ABC(如图1).求证:△ABC 为等腰三角形.证明:如图2,作 AB 的中垂线 MD 交∠ACB 的平分线于 D 点,分别作 DE⊥BC,垂足为 E,DF⊥AC,垂足为 F,连结 BD、AD,则易知:DE=DF,BD=AD.  相似文献   

15.
<正>一、问题呈现题目如图1所示,在△ABC中,AB=6,AC=3,∠BAC=120°,∠BAC的平分线交BC于点D,求AD的长.二、解法新探及思考解法1如图1,过点D作DE∥AB交AC于点E,则∠EDA=∠BAD.∵AD平分∠BAC,∠BAC=120°,∴∠EAD=∠BAD=∠EDA=60°,故△ADE是正三角形,DE=EA=AD.由DE∥AB,  相似文献   

16.
证明含三角函数的几何等式,不少同学感到难以下手,如应用锐角三角函数的定义,将式子中的三角函数转换为两线段的比,从而将问题转化为线段的等比(积),常可迎刃而解。 例1 如图1,△ABC中,以BC为直径的半圆分别和AB、AC交于D、E.求证:DE=BCcosA (1994,西安市中考题) 分析:连BE,则∠BEC=90°,△ABE为直角三角形,从而命题转化为证明DE=BC·AE/AB,即证DE/BC=AE/AB. 为此,可证△ADE∽△ACB. 由∠ADE=∠ACB,∠A=∠A.命题获证.  相似文献   

17.
如图一,在△ABC中,AD为∠BAC的平分线,则AD~2 BD·DC=AB·AC. 这就是平面几何中著名的斯库顿定理.它的证法简便. 证明:延长∠BAC的平分线AD交⊙ABC于E,连结BE.∴∠E=∠C,∠BAE=∠DAC,∵△ABE∽△ADCAB/AE=AD/AC,∴AD(AD DE)=AB·AC.即AD~2 AD·DE=AB·AC,由相交弦定理得AD·DE=BD·DC,∴AD~2 BD·DC=AB·AC.  相似文献   

18.
1一个相似模型图1模型:如图1,△ABC中,AB=AC,D为BC上一点.以D为项点作∠EDF,使∠EDF=∠B,并且∠EDF的一边与AB交于E点,另一边与AC(或延长线)交于F点.则有△BDE∽△CFD.证明因为AB=AC,所以∠B=∠C.又因为∠B=∠EDF,所以∠BED ∠BDE=∠BDE ∠FDC,所以∠BED=∠FDC.所以△BDE∽△CF  相似文献   

19.
例1如图1,在△ABC中,AB>AC,AD是BC边上的中线.求证:∠BAD<∠CAD.图1分析注意到AD是BC边上的中线,中线加倍是常见的添辅助线的方法.然后把研究对象集中在△ABE中,由大边对大角,将问题得以解决.证明延长AD到点E,使DE=AD,连结BE,则D是△ADC与△EDB的对称中心,BE=CA,∠E=∠CAD.∵AB>AC,∴AB>BE,∴∠BAD<∠E,从而∠BAD<∠CAD.例2如图2,在△ABC中,D是BC边的中点,ED⊥DF,EF分别交AB、AC于E、F两点.求证:BE+FC>FE.图2分析能否将BE、FC、EF移到同一三角形考察线段不等关系?利用对称性作图是可以实施的,于是问…  相似文献   

20.
例1已知:四边形ABCD中,对角线AC与BD交于点O,AC=BD,M、N分别是AB、CD的中点,MN交BD、AC分别于点E、F求证:OE=OF.分析:如图1,要证OE=OF,只要证∠OEF=∠OFE,即可.取AD中点G,连接MG、NG,则有MG∥BD,NG∥AC,从而有∠OEF=∠GMN,∠OFE=∠GNM,又MG=12BD,NG=21AC,而AC=BD,故有MG=NG,从而有∠GMN=∠GNM,故可得∠OEF=∠OFE.例2如图2,△ABC中,∠ACB=2∠B,AD⊥BC于点D,M是BC的中点,求证:MD=21AC.分析:取AB中点N,连出△ABC的中位线MN,则有MN=21AC,所以只要证MD=MN即可,连接ND,则ND=21AB=BN,从而…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号