首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid changes in medical knowledge are forcing continuous adaptation of the basic science courses in medical schools. This article discusses a three‐year experience developing a new Computed Tomography (CT)‐based anatomy curriculum at the Sackler School of Medicine, Tel Aviv University, including describing the motivations and reasoning for the new curriculum, the CT‐based learning system itself, practical examples of visual dissections, and student assessments of the new curriculum. At the heart of this new curriculum is the emphasis on studying anatomy by navigating inside the bodies of various living individuals utilizing a CT viewer. To assess the students’ experience with the new CT‐based learning method, an anonymous questionnaire was administered at the end of the course for three consecutive academic years: 2008/2009, 2009/2010, 2010/2011. Based upon the results, modifications were made to the curriculum in the summers of 2009 and 2010. Results showed that: (1) during these three years the number of students extensively using the CT system quadrupled (from 11% to 46%); (2) students' satisfaction from radiologists involvement increased by 150%; and (3) student appreciation of the CT‐based learning method significantly increased (from 13% to 68%). It was concluded that discouraging results (mainly negative feedback from students) during the first years and a priori opposition from the teaching staff should not weaken efforts to develop new teaching methods in the field of anatomy. Incorporating a new curriculum requires time and patience. Student and staff satisfaction, along with utilization of the new system, will increase with the improvement of impeding factors. Anat Sci Educ 6: 332–341. © 2013 American Association of Anatomists.  相似文献   

2.
Changes in medical education have affected both curriculum design and delivery. Many medical schools now use integrated curricula and a systemic approach, with reduced hours of anatomy teaching. While learning anatomy via dissection is invaluable in educational, professional, and personal development, it is time intensive and supports a regional approach to learning anatomy; the use of prosections has replaced dissection as the main teaching method in many medical schools. In our graduate‐entry medical degree, we use an integrated curriculum, with prosections to teach anatomy systemically. However, to not exclude dissection completely, and to expose students to its additional and unique benefits, we implemented a short “Dissection Experience” at the beginning of Year 2. Students attended three two‐hour anatomy sessions and participated in dissection of the clinically relevant areas of the cubital fossa, femoral triangle, and infraclavicular region. This activity was voluntary and we retrospectively surveyed all students to ascertain factors influencing their decision of whether to participate in this activity, and to obtain feedback from those students who did participate. The main reasons students did not participate were previous dissection experience and time constraints. The reasons most strongly affecting students' decisions to participate related to experience (lack of previous or new) and new skill. Students' responses as to the most beneficial component of the dissection experience were based around practical skills, anatomical education, the learning process, and the body donors. We report here on the benefits and practicalities of including a short dissection experience in a systemic, prosection‐based anatomy course. Anat Sci Educ 6: 225–231. © 2013 American Association of Anatomists.  相似文献   

3.
The University of Debrecen's Faculty of Medicine has an international, multilingual student population with anatomy courses taught in English to all but Hungarian students. An elective computer‐assisted gross anatomy course, the Computer Human Anatomy (CHA), has been taught in English at the Anatomy Department since 2008. This course focuses on an introduction to anatomical digital images along with clinical cases. This low‐budget course has a large visual component using images from magnetic resonance imaging and computer axial tomogram scans, ultrasound clinical studies, and readily available anatomy software that presents topics which run in parallel to the university's core anatomy curriculum. From the combined computer images and CHA lecture information, students are asked to solve computer‐based clinical anatomy problems in the CHA computer laboratory. A statistical comparison was undertaken of core anatomy oral examination performances of English program first‐year medical students who took the elective CHA course and those who did not in the three academic years 2007–2008, 2008–2009, and 2009–2010. The results of this study indicate that the CHA‐enrolled students improved their performance on required anatomy core curriculum oral examinations (P < 0.001), suggesting that computer‐assisted learning may play an active role in anatomy curriculum improvement. These preliminary results have prompted ongoing evaluation of what specific aspects of CHA are valuable and which students benefit from computer‐assisted learning in a multilingual and diverse cultural environment. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

4.
Restrictive laboratory scheduling, an increasing number of human cadaver‐based anatomy courses and a reduction in the curricular time allotted to anatomy courses have created problems with cadaver laboratory access at the University of New England. This article describes a combination of anatomy testing and grading strategies to allow “at risk” (borderline failing) students an opportunity to remediate their lowest set of examination scores and pass their anatomy course. An alternative electronic practical examination for these students provided flexibility in laboratory scheduling, thereby increasing laboratory access for other students taking concurrent courses. Specifically, the electronic examinations allowed for a reduction in the amount of time the cadaver laboratory is locked down for examination purposes. Masters‐level occupational therapy (MOT) students, physician assistant students (MPA), and doctoral level physical therapy (DPT) students participated in a prosection‐based human cadaver laboratory and take cadaver‐based practical examinations as part of their anatomy course. Students who were not performing at a passing level for their curriculum (69.5% for MOT and MPA, 79.5% for DPT) were given an opportunity to remediate their lowest set of multiple choice and practical examinations using the previous year's multiple choice examination and a new electronic practical examination. When the original cadaver‐based practical and multiple choice examination scores were replaced with the remedial electronic practical examination and remedial multiple choice examination scores, 75% (24/32) of these students were able to successfully remediate their academic deficiencies and pass their anatomy course. Anat Sci Educ 3:46–49, 2010. © 2009 American Association of Anatomists.  相似文献   

5.
Ultrasound (US) can enhance anatomy education, yet is incorporated into few non‐medical anatomy programs. This study is the first to evaluate the impact of US training in gross anatomy for non‐medical students in the United States. All 32 master's students enrolled in gross anatomy with the anatomy‐centered ultrasound (ACUS) curriculum were recruited. Mean Likert ratings on pre‐ and post‐course surveys (100% response rates) were compared to evaluate the effectiveness of the ACUS curriculum in developing US confidence, and gauge its impact on views of US. Post‐course, students reported significantly higher (P < 0.001) mean confidence ratings in five US skills (pre‐course versus post‐course mean): obtaining scans (3.13 ±1.04 versus 4.03 ±0.78), optimizing images (2.78 ±1.07 versus 3.75 ±0.92), recognizing artifacts (2.94 ±0.95 versus 3.97 ±0.69), distinguishing tissue types (2.88 ±0.98 versus 4.09 ±0.69), and identifying structures (2.97 ±0.86 versus 4.03 ±0.59), demonstrating the success of the ACUS curriculum in students with limited prior experience. Views on the value of US to anatomy education and to students' future careers remained positive after the course. End‐of‐semester quiz performance (91% response rate) provided data on educational outcomes. The average score was 79%, with a 90% average on questions about distinguishing tissues/artifacts, demonstrating positive learning outcomes and retention. The anatomy‐centered ultrasound curriculum significantly increased confidence with and knowledge of US among non‐medical anatomy students with limited prior training. Non‐medical students greatly value the contributions that US makes to anatomy education and to their future careers. It is feasible to enhance anatomy education outside of medical training by incorporating US. Anat Sci Educ 10: 348–362. © 2016 American Association of Anatomists.  相似文献   

6.
Innovations in undergraduate medical education, such as integration of disciplines and problem based learning, have given rise to concerns about students' knowledge of anatomy. This article originated from several studies investigating the knowledge of anatomy of students at the eight Dutch medical schools. The studies showed that undergraduate students uniformly perceived deficiencies in their anatomical knowledge when they started clinical training regardless of their school's didactic approach. A study assessing students' actual knowledge of clinical anatomy revealed no relationship between students' knowledge and the school's didactic approach. Test failure rates based on absolute standards set by different groups of experts were indicative of unsatisfactory levels of anatomical knowledge, although standards differed markedly between the groups of experts. Good test performance by students seems to be related to total teaching time for anatomy, teaching in clinical context, and revisiting anatomy topics in the course of the curriculum. These factors appeared to outweigh the effects of disciplinary integration orwhether the curriculum was problem‐based or traditional. Anat Sci Ed 2008. © 2008 American Association of Anatomists.  相似文献   

7.
Alfaisal University is a new medical school in Riyadh, Kingdom of Saudi Arabia that matriculates eligible students directly from high school and requires them to participate in a hybrid problem‐based learning (PBL) curriculum. PBL is a well‐established student‐centered approach, and the authors have sought to examine if a student‐centered, integrated approach to learn human structures leads to positive perceptions of learning outcomes. Ten students were divided into four groups to rotate through wet and dry laboratory stations (integrated resource sessions, IRSs) that engaged them in imaging techniques, embryology, histology, gross anatomy (dissections and prosections), surface anatomy, and self‐directed learning questions. All IRSs were primarily directed by students. During two second‐semester organ system blocks, forty students responded to a structured questionnaire designed to poll students' perceptions of changes in their knowledge, skills, and attitudes as a result of IRS. The majority (60%) of students felt that the student‐centered approach to learning enhanced their medical knowledge. Most students also felt that the IRS approach was advantageous for formulating clear learning objectives (55%) and in preparing for examinations (65%). Despite their positive feelings toward IRS, students did not view this learning approach as an adequate replacement for the knowledge gained from lectures and textbooks. Students' performance on objective structured practical examinations improved significantly for the two curricular blocks that included IRS compared with earlier non‐IRS blocks. A student‐centered approach to teach human structure in a hybrid PBL curriculum may enhance understanding of the basic sciences in first‐year medical students. Anat Sci Educ 3:272–275, 2010. © 2010 American Association of Anatomists.  相似文献   

8.
If personalized medicine is the way of the future, and the physician's approach to each patient becomes more individualized and team‐based, so must the professors' approach to the medical student experience. Mayo Medical School has an innovative curriculum designed to respect and enhance the individual interests of its students. A former educator herself, and now a medical student, the author advocates for further creative curriculum design to enhance healthy student attitude learning in medical school. In her personal testimony to the healing power of art and story, she cautions institutions that ignore integrating humanities into their curriculum that their student physicians will build self‐protective barriers without self‐reflection. She argues students must have more avenues to express their emotions during difficult transitions and ethical dilemmas. This commentary describes extracurricular student projects during anatomy, and includes an example of student reflective writing in anatomy. The author suggests that narrative medicine as an emerging discipline would be an effective educational strategy when applied to any aspect of the medical curriculum, and should be considered by more medical schools for further progress in medical education. Anat Sci Educ, 2010. © 2010 American Association of Anatomists.  相似文献   

9.
Despite a long tradition, conventional anatomy education based on dissection is declining. This study tested a new virtual reality (VR) technique for anatomy learning based on virtual contrast injection. The aim was to assess whether students value this new three‐dimensional (3D) visualization method as a learning tool and what value they gain from its use in reaching their anatomical learning objectives. Several 3D vascular VR models were created using an interactive segmentation tool based on the “virtual contrast injection” method. This method allows users, with relative ease, to convert computer tomography or magnetic resonance images into vivid 3D VR movies using the OsiriX software equipped with the CMIV CTA plug‐in. Once created using the segmentation tool, the image series were exported in Quick Time Virtual Reality (QTVR) format and integrated within a web framework of the Educational Virtual Anatomy (EVA) program. A total of nine QTVR movies were produced encompassing most of the major arteries of the body. These movies were supplemented with associated information, color keys, and notes. The results indicate that, in general, students' attitudes towards the EVA‐program were positive when compared with anatomy textbooks, but results were not the same with dissections. Additionally, knowledge tests suggest a potentially beneficial effect on learning. Anat Sci Ed 2:61–68, 2009. © 2009 American Association of Anatomists.  相似文献   

10.
The Radboud University Medical Center has a problem‐based, learner‐oriented, horizontally, and vertically integrated medical curriculum. Anatomists and clinicians have noticed students’ decreasing anatomical knowledge and the disability to apply knowledge in diagnostic reasoning and problem solving. In a longitudinal cohort, the retention of anatomical knowledge gained during the first year of medical school among second‐year medical students was assessed. In May 2011, 346 medical students applied for the second‐year gastro‐intestinal (GI) tract course. The students were asked to participate in a reexamination of a selection of anatomical questions of an examination from October 2009. The examination consisted of a clinical anatomy case scenario and two computed tomography (CT) images of thorax and abdomen in an extended matching format. A total of 165 students were included for analysis. In 2011, students scored significantly lower for the anatomy examination compared to 2009 with a decline in overall examination score of 14.7% (±11.7%). Decrease in knowledge was higher in the radiological questions, compared to the clinical anatomy cases 17.5% (±13.6%) vs. 7.9% (±10.0%), respectively, d = 5.17. In both years, male students scored slightly better compared to female students, and decline of knowledge seems somewhat lower in male students (13.1% (±11.1%) vs. 15.5% (±12.0%), respectively), d = ?0.21. Anatomical knowledge in the problem‐oriented horizontal and vertical integrated medical curriculum, declined by approximately 15% 1.5 year after the initial anatomy course. The loss of knowledge in the present study is relative small compared to previous studies. Anat Sci Educ 10: 242–248. © 2016 American Association of Anatomists.  相似文献   

11.
Authors report here a survey of medical student feedback on the effectiveness of two different anatomy curricula at Christian Medical College, Vellore, India. Undergraduate medical students seeking the Bachelor in Medicine and Bachelor in Surgery (M.B.B.S.) degrees were divided into two groups by the duration of their respective anatomy curriculum. Group 1 students had completed a longer, 18‐month curriculum whereas Group 2 counterparts followed a shorter, 12‐month curriculum. Students' responses to a questionnaire were studied. Analysis of feedback from Groups 1 and 2 contrasted the effectiveness of the two anatomy curricula. The coverage of gross anatomy was rated adequate or more than adequate by 98% of Group 1 and 91% of Group 2. A desire for greater emphasis on gross anatomy teaching was expressed by 24% of Group 1 and 50% of Group 2 (P = 0.000). Two‐thirds of all students felt that the one‐year program was not adequate, and 90% of Group 1 and 74% of Group 2 felt that clinically oriented anatomy teaching required more emphasis. Dissection was helpful or very helpful for 94% of Group 1 and 88% of Group 2. This study suggests that a better understanding of gross anatomy was gained from a course of longer duration (18 months with 915 contact hr vs. 12 months with 671 contact hr). Students who completed the longer anatomy course had greater appreciation of the need for clinically oriented anatomy teaching and dissection. Anat Sci Educ 2:179–183, 2009. © 2009 American Association of Anatomists.  相似文献   

12.
13.
To understand how students learn about science controversy, this study examines students' reasoning about tradeoffs in the context of a technology‐enhanced curriculum about genetically modified food. The curriculum was designed and refined based on the Scaffolded Knowledge Integration Framework to help students sort and integrate their initial ideas and those presented in the curriculum. Pre‐test and post‐test scores from 190 students show that students made significant (p?<?0.0001) gains in their understanding of the genetically modified food controversy. Analyses of students' final papers, in which they took and defended a position on what type of agricultural practice should be used in their geographical region, showed that students were able to provide evidence both for and against their positions, but were less explicit about how they weighed these tradeoffs. These results provide important insights into students' thinking and have implications for curricular design.  相似文献   

14.
The head and neck region is one of the most complex areas featured in the medical gross anatomy curriculum. The effectiveness of using three‐dimensional (3D) models to teach anatomy is a topic of much discussion in medical education research. However, the use of 3D stereoscopic models of the head and neck circulation in anatomy education has not been previously studied in detail. This study investigated whether 3D stereoscopic models created from computed tomographic angiography (CTA) data were efficacious teaching tools for the head and neck vascular anatomy. The test subjects were first year medical students at the University of Mississippi Medical Center. The assessment tools included: anatomy knowledge tests (prelearning session knowledge test and postlearning session knowledge test), mental rotation tests (spatial ability; presession MRT and postsession MRT), and a satisfaction survey. Results were analyzed using a Wilcoxon rank‐sum test and linear regression analysis. A total of 39 first year medical students participated in the study. The results indicated that all students who were exposed to the stereoscopic 3D vascular models in 3D learning sessions increased their ability to correctly identify the head and neck vascular anatomy. Most importantly, for students with low‐spatial ability, 3D learning sessions improved postsession knowledge scores to a level comparable to that demonstrated by students with high‐spatial ability indicating that the use of 3D stereoscopic models may be particularly valuable to these students with low‐spatial ability. Anat Sci Educ 10: 34–45. © 2016 American Association of Anatomists.  相似文献   

15.
Anatomy educators are being tasked with delivering the same quantity and quality of material in the face of fewer classroom and laboratory hours. As a result they have turned to computer‐aided instruction (CAI) to supplement and augment curriculum delivery. Research on the satisfaction and use of anatomy videos, a form of CAI, on examination performance continues to grow. The purpose of this study was to describe the usage and effect on examination scores of a series of locally produced anatomy videos after an 11% curriculum reduction. First‐year medical students (n = 40) were given access to the videos and the prior year's students (n = 40) were used as historical controls. There was no significant difference in demographics between the two groups. The survey response rate was 85% (n = 34) in the experimental group. The students found the videos to be highly satisfying (median = 5 on a five‐point Likert scale, interquartile range = 1) and used them on average 1.55 times/week (SD ± 0.77). Availability of the videos did have a statistically significant effect (4% improvement) on the final laboratory examination (p = 0.039). This suggests that the videos were a well‐received form of CAI that may be useful in bridging the gap created by a reduction in gross anatomy course contact hours. Anat Sci Educ 7: 273–279. © 2013 American Association of Anatomists.  相似文献   

16.
Multiliteracies‐related research is just emerging from the formal discourse of pedagogical theorising and how it may look in practice needs further exploration. This research, initiated under that warrant, presents practitioner research and the enactment of a multiliteracies curriculum with Year 8 students in New York City's Chinatown. The study describes a collaborative digital literacies project with a local contemporary arts museum where students engaged in the multi‐modal redesign of school texts. First, the article outlines a move of multiliteracies theory into curriculum practice where students explored questions of Chinese‐American and immigrant identities through a discourse analysis of history texts. Then, drawing on a digital gothic and hip‐hop cartoon Web project, it outlines how students challenged ways their ethnic identities were positioned by drawing political satire cartoons about immigration to the United States. The project concluded with a virtual exhibition of students' artwork where they inserted their cartoons within existing educational websites using HTML and Flash. It argues that the redesigned websites are a new set of multi‐modal literacy practices that allow youth to disrupt racist and exclusionary discourses they encounter in school texts and their lived experiences.  相似文献   

17.
The aims of this review were to examine the place of surface anatomy in the medical literature, particularly the methods and approaches used in teaching surface and living anatomy and assess commonly used anatomy textbooks in regard to their surface anatomy contents. PubMed and MEDLINE databases were searched using the following keywords “surface anatomy,” “living anatomy,” “teaching surface anatomy,” “bony landmarks,” “peer examination” and “dermatomes”. The percentage of pages covering surface anatomy in each textbook was calculated as well as the number of images covering surface anatomy. Clarity, quality and adequacy of surface anatomy contents was also examined. The search identified 22 research papers addressing methods used in teaching surface anatomy, 31 papers that can help in the improvement of surface anatomy curriculum, and 12 anatomy textbooks . These teaching methods included: body painting, peer volunteer surface anatomy, use of a living anatomy model, real time ultrasound, virtual (visible) human dissector (VHD), full body digital x‐ray of cadavers (Lodox® Statscan® images) combined with palpating landmarks on peers and the cadaver, as well as the use of collaborative, contextual and self‐directed learning. Nineteen of these studies were published in the period from 2006 to 2013. The 31 papers covered evidence‐based and clinically‐applied surface anatomy. The percentage of surface anatomy in textbooks' contents ranged from 0 to 6.2 with an average of 3.4%. The number of medical illustrations on surface anatomy varied from 0 to 135. In conclusion, although there has been a progressive increase in publications addressing methods used in teaching surface anatomy over the last six to seven years, most anatomy textbooks do not provide students with adequate information about surface anatomy. Only three textbooks provided a solid explanation and foundation of understanding surface anatomy. Anat Sci Educ 6: 415–432. © 2013 American Association of Anatomists.  相似文献   

18.
The present study evaluated the students' psychological well-being, experiences, performance, and perception of learning regional anatomy remotely. A regional anatomy remote learning curriculum was designed and learning materials were delivered virtually to 120 undergraduate medical students at Jinan University, China. All the students consented and voluntarily participated in this study by completing self-administered online questionnaires including the Zung's Self-Rating Anxiety and Depression Scales at the beginning and end of the learning session. A subset participated in focus group discussions. Most of the students (90.0%) positively evaluated the current distance learning model. More than 80% were satisfied with the content arrangement and coverage. Many students preferred virtual lectures (68.2%) and videos showing dissections (70.6%) during the distance learning sessions. However, writing laboratory reports and case-based learning were the least preferred modes of learning as they were only preferred by 23.2% and 14.1% of the students, respectively. There was no significant lockdown-related anxiety or depression reported by students using depression and anxiety scales as well as feedback from focus group discussions. The surveyed students' confidence scores in distance learning were significantly higher after 5 weeks than at the beginning of the session (3.05 ± 0.83 vs. 3.70 ± 0.71, P < 0.05). Furthermore, the present results showed no significant differences between the current group's academic performance in the unit tests as well as the final overall evaluation for different parts of the course compared to that of the previous year's cohort. The findings above were congruent with focus group discussion data that the use of the online teaching platform for regional anatomy significantly improved the students' confidence in virtual and self-directed learning and did not negatively affect their academic performance.  相似文献   

19.
Veterinary students at the Royal Veterinary College, University of London learn about bovine abdominal anatomy using a virtual reality simulator, the Haptic Cow. A haptic device is positioned inside a fiberglass model of the rear‐half of a cow, allowing students to palpate virtual abdominal structures via a robotic arm. The Haptic Cow helps to address some of the practical and ethical issues around sourcing and using cadavers and live animals in teaching. Kinnison and her co‐authors discuss use of this simulator in anatomy classes in the current issue of ASE.  相似文献   

20.
Radiology and radiologists are recognized as increasingly valuable resources for the teaching and learning of anatomy. State‐of‐the‐art radiology department workstations with industry‐standard software applications can provide exquisite demonstrations of anatomy, pathology, and more recently, physiology. Similar advances in personal computers and increasingly available software can allow anatomy departments and their students to build their own three‐dimensional virtual models. Appropriate selection of a data‐set, followed by processing and presentation are the key steps in creating virtual models. The construction, presentation, clinical application, and educational potential of postprocessed imaging techniques including multiplanar reformats, minimum intensity projections, segmentation, volume‐rendering, surface‐rendering, fly‐throughs, virtual endoscopy, angiography, and cine‐loops are reviewed using examples created with only a personal computer and freeware software. Although only static images are presented in this article, further material is available online within the electronic version of this article. Through the use of basic and advanced image reconstruction and also paying attention to optimized presentation and integration, anatomy courses can be strengthened with appropriate radiological material. There are several key advantages for the anatomy department, which is equipped with the ability to produce virtual models using radiology images: (1) Opportunities to present anatomy using state‐of‐the‐art technology as an adjunct to current practices, (2) a means to forge an improved relationship with the local radiology department, and (3) the ability to create material locally, which is integrated with the local curriculum avoiding the problem of information overload when using the internet or other commercially available resources. Anat Sci Educ 3:261–266, 2010. © 2010 American Association of Anatomists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号