首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article describes the introduction of a virtual microscope (VM) that has allowed preclinical histology teaching to be fashioned to better suit the needs of approximately 900 undergraduate students per year studying medicine, dentistry, or veterinary science at the University of Bristol, United Kingdom. Features of the VM implementation include: (1) the facility for students and teachers to make annotations on the digital slides; (2) in‐house development of VM‐based quizzes that are used for both formative and summative assessments; (3) archiving of teaching materials generated each year, enabling students to access their personalized learning resources throughout their programs; and (4) retention of light microscopy capability alongside the VM. Student feedback on the VM is particularly positive about its ease of use, the value of the annotation tool, the quizzes, and the accessibility of all components off‐campus. Analysis of login data indicates considerable, although variable, use of the VM by students outside timetabled teaching. The median number of annual logins per student account for every course exceeded the number of timetabled histology classes for that course (1.6–3.5 times). The total number of annual student logins across all cohorts increased from approximately 9,000 in the year 2007–2008 to 22,000 in the year 2010–2011. The implementation of the VM has improved teaching and learning in practical classes within the histology laboratory and facilitated consolidation and revision of material outside the laboratory. Discussion is provided of some novel strategies that capitalize on the benefits of introducing a VM, as well as strategies adopted to overcome some potential challenges. Anat Sci Educ 7: 389–398. © 2013 American Association of Anatomists.  相似文献   

2.
3.
ON THE COVER: Students at the University of Bristol in the UK using virtual microscopy in the histology teaching laboratory . In this issue of ASE, Dr Margaret Gatumu and co‐authors describe how virtual microscopy (VM), alongside traditional light microscopy, is used in histology teaching and learning for medical, dental and veterinary students. Students work in pairs or small groups facilitated by teachers to select, explore and annotate VM images as seen on individual desktop computer screens. A printed handbook guides the students through the slides. Student‐led learning is supplemented by lecture‐demonstrations by a teacher delivered from a podium; the view from the teacher's computer is visible throughout the laboratory on drop‐down projector screens. Photograph by Derek Carr.  相似文献   

4.
Virtual microscopy (VM) is a widely used teaching method in Medical Education in many developed countries. In Brazil, however, this is not the case for most medical schools, considering Brazilian social inequality and uneven access to technology. Recently, the Covid-19 pandemic has also challenged Universities to seek and make a transition toward more effective methods of full-time online education. Thus, the main goal of this work was to verify student's perception and academic performance, assessed upon VM implementation in a Brazilian Medical School. Ribeirao Preto Medical School students answered a 26-question survey with regards to optical microscopy (OM) and VM. Academic performance was compared between participants that were (year of 2019) or were not (year of 2015) exposed to VM. Taken the results together, subjective impressions such as handling, suitability, learning effectiveness, and pleasure using the tools, have shown a higher score for virtual microscopy (median = 29), when compared to optical microscopy (median = 24) with a P-value < 0.001 by Wilcoxon rank test, upon measurement using an ordinal scale. Regarding academic performance, no statistically significant differences were found between groups (P-value = 0.38, Cohen's d = 0.19). Therefore, VM proved to be adequate to the Brazilian medical education in light of Brazilian social contexts and Covid-19 pandemic.  相似文献   

5.
The adoption of virtual microscopy at the University of Turku, Finland, created a unique real‐world laboratory for exploring ways of reforming the learning environment. The purpose of this study was to evaluate the students' reactions and the impact of a set of measures designed to boost an experimental group's understanding of abnormal histology through an emphasis on knowledge of normal cells and tissues. The set of measures included (1) digital resources to review normal structures and an entrance examination for enforcement, (2) digital course slides highlighting normal and abnormal tissues, and (3) self‐diagnostic quizzes. The performance of historical controls was used as a baseline, as previous students had never been exposed to the above‐mentioned measures. The students' understanding of normal histology was assessed in the beginning of the module to determine the impact of the first set of measures, whereas that of abnormal histology was assessed at the end of the module to determine the impact of the whole set of measures. The students' reactions to the instructional measures were assessed by course evaluation data. Additionally, four students were interviewed. Results confirmed that the experimental group significantly outperformed the historical controls in understanding normal histology. The students held favorable opinions on the idea of emphasizing normal structures. However, with regards to abnormal histology, the historical controls outperformed the experimental group. In conclusion, allowing students access to high‐quality digitized materials and boosting prerequisite skills are clearly not sufficient to boost final competence. Instead, the solution may lie in making students externally accountable for their learning throughout their training. Anat Sci Educ 6: 73–80. © 2012 American Association of Anatomists.  相似文献   

6.
Clay modeling is increasingly used as a teaching method other than dissection. The haptic experience during clay modeling is supposed to correspond to the learning effect of manipulations during exercises in the dissection room involving tissues and organs. We questioned this assumption in two pretest–post‐test experiments. In these experiments, the learning effects of clay modeling were compared to either live observations (Experiment I) or video observations (Experiment II) of the clay‐modeling exercise. The effects of learning were measured with multiple choice questions, extended matching questions, and recognition of structures on illustrations of cross‐sections. Analysis of covariance with pretest scores as the covariate was used to elaborate the results. Experiment I showed a significantly higher post‐test score for the observers, whereas Experiment II showed a significantly higher post‐test score for the clay modelers. This study shows that (1) students who perform clay‐modeling exercises show less gain in anatomical knowledge than students who attentively observe the same exercise being carried out and (2) performing a clay‐modeling exercise is better in anatomical knowledge gain compared to the study of a video of the recorded exercise. The most important learning effect seems to be the engagement in the exercise, focusing attention and stimulating time on task. Anat Sci Educ 7: 420–429. © 2014 American Association of Anatomists.  相似文献   

7.
Virtual microscopy (VM) has been utilized to improve students' learning experience in microscope laboratory sessions, but minimal attention has been given to determining how to use VM more effectively. The study examined the influence of VM on academic performance and teacher and student perceptions and compared laboratory test scores before and after VM incorporation. A total of 662 third-year students studying histology and 651 fourth-year students studying pathology were divided into two groups. The light microscopy (LM) group used a light microscope in 2014 and 2015, while the LM + VM group used the VM platform and a light microscope in 2016 and 2017. Four factors positively predict laboratory scores (R square, 0.323; P < 0.001): (i) the pathology course and test-enhanced learning, (ii) the VM platform and experience, (iii) medical students and lecture scores, and (iv) female students. The LM + VM group exhibited less score variability on laboratory examinations relative to their mean than the LM group. The LM + VM group was also associated with fewer failing grades (F grade; odds ratio, 0.336; P < 0.001) and higher scores (A grade; odds ratio, 2.084; P < 0.001) after controlling for sex, school, course, and lecture grades. The positive effect of the VM platform on laboratory test grades was associated with prior experience using the VM platform and was synergistic with more interim tests. Both teachers and students agreed that the VM platform enhanced laboratory learning. The incorporation of the VM platform in the context of test-enhanced learning may help more students to master microscopic laboratory content.  相似文献   

8.
A trend in medical schools across the United States is the refurbishing of histology laboratories with digital microscopy systems. Although such systems may reduce curricular time, they do not teach basic microscope skills, and students who learn solely with these systems may be less prepared for their practices or specialties, particularly in rural areas that may not be equipped with digital microscope technology. At the West Virginia School of Osteopathic Medicine (WVSOM), students are trained to practice in a wide variety of environments, especially rural areas. A research survey was conducted to gather information for evidence‐based decisions about histology education at WVSOM. The survey asked a range of questions concerning histology knowledge, tissue preparation, and microscopy. Responses did not differ significantly between physicians in urban versus rural practices. Ninety percent of physicians do not utilize digitized images, and only 50% have microscopes readily available. Regardless of the technology available, 90% feel that students must have microscope training and 88% of physicians feel that histology is important to the medical curriculum and use their histology knowledge often (weekly or daily) (66%). These results demonstrate that histology education should move toward a blending of traditional microscope and glass slides with computer‐based instructional technologies. Anat Sci Educ 2:205–209, 2009. © 2009 American Association of Anatomists.  相似文献   

9.
This article describes the development of an interactive computer‐based laboratory manual, created to facilitate the teaching and learning of medical histology. The overarching goal of developing the manual is to facilitate self‐directed group interactivities that actively engage students during laboratory sessions. The design of the manual includes guided instruction for students to navigate virtual slides, exercises for students to monitor learning, and cases to provide clinical relevance. At the end of the laboratory activities, student groups can generate a laboratory report that may be used to provide formative feedback. The instructional value of the manual was evaluated by a questionnaire containing both closed‐ended and open‐ended items. Closed‐ended items using a five‐point Likert‐scale assessed the format and navigation, instructional contents, group process, and learning process. Open‐ended items assessed student's perception on the effectiveness of the manual in facilitating their learning. After implementation for two consecutive years, student evaluation of the manual was highly positive and indicated that it facilitated their learning by reinforcing and clarifying classroom sessions, improved their understanding, facilitated active and cooperative learning, and supported self‐monitoring of their learning. Anat Sci Educ 6: 342–350. © 2013 American Association of Anatomists.  相似文献   

10.
Changes in medical school curricula often require educators to develop teaching strategies that decrease contact hours while maintaining effective pedagogical methods. When faced with this challenge, faculty at the University of Cincinnati College of Medicine converted the majority of in‐person histology laboratory sessions to self‐study modules that utilize multiple audiovisual modalities and a virtual microscope platform. Outcomes related to this shift were investigated through performance on in‐house examinations, results of the United States Medical Licensing Examination® (USMLE®) Step 1 Examination, and student feedback. Medical School College Admissions Test® (MCAT®) scores were used as a covariate when comparing in‐house examinations. Results revealed no significant change in performance on in‐house examinations when the content being assessed was controlled (F(2, 506) = 0.676, P = 0.51). A significant improvement in overall practical examination grade averages was associated with the self‐study modules (F(6, 1164) = 10.213, P < 0.01), but gradual changes in examination content may explain this finding. The histology and cell biology portion of USMLE Step 1 Examination remained consistent throughout the time period that was investigated. Student feedback regarding the self‐study modules was positive and suggested that features such as instructor narrated videos were an important component of the self‐study modules because they helped recreate the experience of in‐person laboratory sessions. Positive outcomes from the student perspective and no drop in examination performance suggests that utilizing self‐study modules for histology laboratory content may be an option for educators faced with the challenge of reducing contact hours without eliminating content. Anat Sci Educ 10: 276–285. © 2016 American Association of Anatomists.  相似文献   

11.
Virtual microscopy podcasts (VMPs) are narrative recordings of digital histology images. This study evaluated the outcomes of integrating the VMPs into teaching histology to osteopathic medical students. The hypothesis was that incorporating virtual microscopy podcasts as supplementary histology resources to the curriculum would have a positive impact on student performance and satisfaction. Sixty-one podcasts of dynamic microscopic images were created using screen recordings of the digital slides. The VMPs were integrated as supplementary histology resources in multiple courses during the first and second years of the medical curriculum for three classes, a total of 477 osteopathic medical students. A voluntary and anonymous survey was obtained from the students using a questionnaire that included two open-ended questions. The overall performance of the three classes on the histology content of the preclinical course examinations was compared to historical controls of the previous two classes that did not have access to the VMPs. Most students indicated that the podcasts enabled more efficient study time and improved their confidence in the histology content on examinations. The findings indicated a positive association between podcast viewing and efficient study time utilization and class performance. The class average scores of the three consecutive cohorts that used the VMPs progressively increased by 7.69%, 14.88%, and 14.91% compared to the controls. A summary of students' feedback and academic performance supported that integration of the VMPs into Histology teaching improved the learning experience. The findings align with previous studies on the effectiveness of multimedia-based teaching in histology laboratory modules.  相似文献   

12.
Bloom's taxonomy was adopted to create a subject‐specific scoring tool for histology multiple‐choice questions (MCQs). This Bloom's Taxonomy Histology Tool (BTHT) was used to analyze teacher‐ and student‐generated quiz and examination questions from a graduate level histology course. Multiple‐choice questions using histological images were generally assigned a higher BTHT level than simple text questions. The type of microscopy technique (light or electron microscopy) used for these image‐based questions did not result in any significant differences in their Bloom's taxonomy scores. The BTHT levels for teacher‐generated MCQs correlated positively with higher discrimination indices and inversely with the percent of students answering these questions correctly (difficulty index), suggesting that higher‐level Bloom's taxonomy questions differentiate well between higher‐ and lower‐performing students. When examining BTHT scores for MCQs that were written by students in a Multiple‐Choice Item Development Assignment (MCIDA) there was no significant correlation between these scores and the students' ability to answer teacher‐generated MCQs. This suggests that the ability to answer histology MCQs relies on a different skill set than the aptitude to construct higher‐level Bloom's taxonomy questions. However, students significantly improved their average BTHT scores from the midterm to the final MCIDA task, which indicates that practice, experience and feedback increased their MCQ writing proficiency. Anat Sci Educ 10: 456–464. © 2017 American Association of Anatomists.  相似文献   

13.
Minimal evidence exists regarding the retrospective pretest’s effectiveness as a tool to obtain usable, indirect evidence of student learning in open admissions institutions. The researcher conducted this study to determine if a retrospective pretest more accurately detected a change in students’ knowledge compared to a conventional pretest–posttest. The researcher designed a 17‐item inventory covering course objectives, and students were randomly assigned to either a retrospective pretest (referred to as post‐then) or a conventional pretest–posttest group. Findings indicated that participants in the post‐then group reported a greater change in knowledge compared to the conventional group. This finding supported the use of the retrospective pretest as a tool for getting usable, indirect evidence of student learning. Future research needs to examine response effect, alternative ways of calculating treatment effect and the confounding influences of other perceptual variables.  相似文献   

14.
Over the last 20 years, virtual microscopy has become the predominant modus of teaching the structural organization of cells, tissues, and organs, replacing the use of optical microscopes and glass slides in a traditional histology or pathology laboratory setting. Although virtual microscopy image files can easily be duplicated, creating them requires not only quality histological glass slides but also an expensive whole slide microscopic scanner and massive data storage devices. These resources are not available to all educators and researchers, especially at new institutions in developing countries. This leaves many schools without access to virtual microscopy resources. The Virtual Microscopy Database (VMD) is a new resource established to address this problem. It is a virtual image file‐sharing website that allows researchers and educators easy access to a large repository of virtual histology and pathology image files. With the support from the American Association of Anatomists (Bethesda, MD) and MBF Bioscience Inc. (Williston, VT), registration and use of the VMD are currently free of charge. However, the VMD site is restricted to faculty and staff of research and educational institutions. Virtual Microscopy Database users can upload their own collection of virtual slide files, as well as view and download image files for their own non‐profit educational and research purposes that have been deposited by other VMD clients. Anat Sci Educ 11: 510–515. © 2018 American Association of Anatomists.  相似文献   

15.
When educators develop and introduce new learning approaches or resources, they usually have specific didactic goals in mind that they want to achieve. However, these goals may not always match the needs of their students, who often confound such plans by finding new and different uses for the educational tools that are offered to them. Originating from the author’s work as the histology component director at the University of Michigan, the experience described here provides an example of a learning resource being reappropriated by the learning community. In order to encourage dental students to study histological micrographs after faculty-guided laboratory sessions were eliminated, the author prepared and offered them a series of PowerPoint files with histology images and some corresponding questions. However, instead of increasing their motivation to use the online virtual microscopy resources, students adapted this new tool for reviewing the material and for self-evaluation whether they were prepared for upcoming examinations. Although the product did not succeed as originally devised, it turned into a very popular review resource for the author’s students. Students’ feedback and critical input, as well as their active participation in producing additional, similar learning tools were the deciding factors for this successful change of purpose and the further development and refinement of this new learning resource.  相似文献   

16.
Over the years, the role and extent of the basic sciences in medical curricula have been challenged by research on clinical expertise, clinical teachers, and medical students, as well as by the development and diversification of the medical curricula themselves. The aim of this study was to examine how prior knowledge of basic histology and histopathology among students predicts early learning of diagnostic pathology. Participants (N=118, representing 91% of the full student cohort) were medical students at the University of Turku, Finland. Data were collected during two preclinical courses that students attended in their first and second years of medical school. The measurements included tests on biomedical and clinical knowledge and a performance test in diagnostic pathology. Second‐year performance on the diagnostic pathology examinations was predicted by the students' prior knowledge of histology, but not by the students' prior knowledge of histopathology. Although earlier research has demonstrated similar results in studies with shorter longitudinal designs, the present study demonstrates that the effect remains even if there is a considerably long time delay (a year) between the measurements, thus confirming the long‐term value of basic science studies in the preclinical phase. Anat Sci Educ 6: 361–367. © 2013 American Association of Anatomists.  相似文献   

17.
Anatomy students studying dissected anatomical specimens were subjected to either a loosely‐guided, self‐directed learning environment or a strictly‐guided, preformatted gross anatomy laboratory session. The current study's guiding questions were: (1) do strictly‐guided gross anatomy laboratory sessions lead to higher learning gains than loosely‐guided experiences? and (2) are there differences in the recall of anatomical knowledge between students who undergo the two types of laboratory sessions after weeks and months? The design was a randomized controlled trial. The participants were 360 second‐year medical students attending a gross anatomy laboratory course on the anatomy of the hand. Half of the students, the experimental group, were subjected without prior warning to station‐based laboratory sessions; the other half, the control group, to loosely‐guided laboratory sessions, which was the course's prevailing educational method at the time. The recall of anatomical knowledge was measured by written reproduction of 12 anatomical names at four points in time: immediately after the laboratory experience, then one week, five weeks, and eight months later. The strictly‐guided group scored higher than the loosely‐guided group at all time‐points. Repeated ANOVA showed no interaction between the results of the two types of laboratory sessions (P = 0.121) and a significant between‐subject effect (P ≤ 0.001). Therefore, levels of anatomical knowledge retrieved were significantly higher for the strictly‐guided group than for the loosely‐guided group at all times. It was concluded that gross anatomy laboratory sessions with strict instructions resulted in the recall of a larger amount of anatomical knowledge, even after eight months. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

18.
In an ever-changing medical curricular environment, time dedicated for anatomical education has been progressively reduced. This happened at the University of Michigan Medical School starting in 2016–2017 when preclinical medical education was condensed to one year. Histology instruction remained integrated in organ system courses but reduced to a lecture-only format without scheduling time for laboratory exercises, requiring students to study virtual histology slides on their own time. In accordance with the shortened instructional time, the number of histology examination questions was reduced more than twofold. This study analyzed students' histology examination results and assessed their motivation to learn histology and use of educational opportunities before and after these curricular changes were implemented. Students' motivation to learn histology and their evaluation of histology lectures increased in the new curriculum. However, students devoted less study time to studying histology. Students' cumulative histology examination scores were significantly lower in the new curriculum and the number of students with overall scores <75%, defined as a substandard performance, increased more than 15-fold. Academically weaker students' histology scores were disproportionately more affected. As medical educational strategies, priorities, and curricular frameworks continue to evolve, traditional didactic topics like histology will need to adapt to continue providing educational value to future health care providers.  相似文献   

19.
Innovative educational strategies can provide variety and enhance student learning while addressing complex logistical and financial issues facing modern anatomy education. Observe‐Reflect‐Draw‐Edit‐Repeat (ORDER), a novel cyclical artistic process, has been designed based on cognitivist and constructivist learning theories, and on processes of critical observation, reflection and drawing in anatomy learning. ORDER was initially investigated in the context of a compulsory first year surface anatomy practical (ORDER‐SAP) at a United Kingdom medical school in which a cross‐over trial with pre‐post anatomy knowledge testing was utilized and student perceptions were identified. Despite positive perceptions of ORDER‐SAP, medical student (n = 154) pre‐post knowledge test scores were significantly greater (P < 0.001) with standard anatomy learning methods (3.26, SD = ±2.25) than with ORDER‐SAP (2.17, ±2.30). Based on these findings, ORDER was modified and evaluated in the context of an optional self‐directed gross anatomy online interactive tutorial (ORDER‐IT) for participating first year medical students (n = 55). Student performance was significantly greater (P < 0.001) with ORDER‐IT (2.71 ± 2.17) when compared to a control tutorial (1.31 ± 2.03). Performances of students with visual and artistic preferences when using ORDER were not significantly different (P > 0.05) to those students without these characteristics. These findings will be of value to anatomy instructors seeking to engage students from diverse learning backgrounds in a research‐led, innovative, time and cost‐effective learning method, in the context of contrasting learning environments. Anat Sci Educ 10: 7–22. © 2016 American Association of Anatomists.  相似文献   

20.
Many studies that evaluate the introduction of technology in the classroom focus on student performance and student evaluations. This study focuses on instructor evaluation of the introduction of virtual microscopy into an undergraduate anatomy class. Semi-structured interviews were conducted with graduate teaching assistants (TA) and analyzed through qualitative methods. This analysis showed that the teaching assistants found the virtual microscope to be an advantageous change in the classroom. They cite the ease of use of the virtual microscope, access to histology outside of designated laboratory time, and increasing student collaboration in class as the primary advantages. The teaching assistants also discuss principal areas where the use of the virtual microscope can be improved from a pedagogical standpoint, including requiring students to spend more time working on histology in class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号