首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
众所周知,如果两条曲线的方程是:f_1(x,y)=0和f_2(X,y)= 0,它们的交点是P(x_0,y_0),则方程f_1(x,y)+ λf_2(x,y)=0曲线是经过定点P的曲线系方程。利用或构造这个方程进行解题,可使某些问题的求  相似文献   

2.
设二元函数f(x,y),P_o(x_o,y_o)为定义域D中一个聚点,A是一个确定的实数。若对Aε>0,Eδ>0,当p(x,y)∈v~0(p_o,δ)D时,有|f(x,y)-A|<ε,则称A是f(x,y)在P_o点的(二重)极限。记作lim f(x,y)=A或lim f(x,y)=A.(x,y)→(x_o,y_o) x→x_o y→y_o 例如,讨论xy~2/x~2+y~4在(0,0)点的极限。 设f(x,y)= xy~2/x~2+y~4,令y=0,则f(x,0)=0,(x≠0)即当P(x,y)沿x轴趋于(0,0)点时,f(x,y)→0,  相似文献   

3.
金良 《中学教研》2002,(8):21-22
高中数学新教材(试验本)第二册(上)的第108页有一道习题: 两条曲线的方程是f(x,y)=0和f_2(x,y)=0,它们的交点是P(x_0,y_0),求证方程,f_1(x,y) λf_2(x,y)=0的曲线也过点P(λ是任意实数)。我们把上题所叙述的事实称为“过两已知曲线  相似文献   

4.
全日制普通高级中学教科书(必修)《数学》第二册(上) P_(88)B 组4,即题目两条曲线 f_1(x,y)=0和 f_2(x,y)=0,它们的交点是 P(x_0,y_0),求证:方程f_1(x,y) λf_2(x,y)=0①的曲线也经过点 P(λ是任意实数).题目结论的证明很容易,此略.题目中,把条件放宽为二曲线 f_1(x,y)=0和 f_2(x,y)=0可以无交点,即方程组(?)②无实数解.  相似文献   

5.
曲线的切线作法,方法很多,本文试图利用导数知识来求作曲线的切线,可供中学教师参考。函数y=f(x)在点x_o处的导数f′(x_o)的几何意义,就是曲线y=f(x)在点x_o处的切线的斜率。这样,曲线y=f(x)在点p(x_o,y_o,)处的切线是y-y_o=f′(x_o)(x-x_o)………(1) 法线是y-y_o=-1/f′(x_o)(x-x_o)即x-x_o=-f′(x_o)(y-y_o)………………(2)(1)式中令y=0,得出切线与x轴的交点T的横坐标为x_o-y_o/f′(x_o),同样,(2)式中令y=0,得出法线与x轴的交点N的横坐标为x_o f′(x_o)·y_o,切线PT在x轴上的射影为MT,在Rt△  相似文献   

6.
一、二曲线的和系定义1:在实数域内,设有二曲线 f_1(x、y)=0,f_2(x、y)=0,称曲线系mf_1(x、y)+nf_2(x、y)=0为曲线f_1、f_2的和系.m、n是不为0的实参数.令λ=n/m,则曲线f_1、f_2的和系可以写成: f_1(x、y)+λf_2(x、y)=0,当f_1=f_2时,规定λ≠—1。性质1:当二曲线f_1(x、y)=0与f_2(x、y)=0有公共点时,二曲线的和系f_1(x、y)+λf_2(x、y)=0为过f_1、f_2公共点的曲线系。性质2:除曲线f_1(x、y)=0与f_2(x、y)=0的公共点以外,二曲线的和系f_1(x、y)+λf_2(x、y)=0与曲线f_1或f_2没有其他的公共  相似文献   

7.
各已知渐近线方程 f_1(x)=0,f_2(x)=0而不知双曲线方程类型情况下,求双曲线方程可通过设方程为f_1(x)·f_2(x)=λ(λ≠0)来确定.例1 求以4x-3y=0,4x 3y=0为渐近线方程且过 P(4 (3~(1/2),8)的双曲线方程.解:渐近线方程可变为(4x-3y)(4x 3y)=16x~2-9y~2=0  相似文献   

8.
在平面解析几何中,我们经常遇到过两条曲线交点的曲线方程的问题。它有什么特征呢?现叙证如下: 性质1 若曲线l_1:f_1(x,y)=0与l_2:f_2(x,y)=0有交点为P_0(x_0,y_0),则曲线l_3:f_1(x,y)+λf_2(x,y)=0也经过交点P_0(x_0,y_0)其中λ为一切实数。  相似文献   

9.
本文证明了命题:若圆锥曲线f_1(x,y)=0和f_2(x,y)=0的二次项系数相应相等且相交,则经过交点弦所在直线方程为f_1(x,y)-f_2(x,y)=0。从而推出命题:圆锥曲线f(x,y)=0被点M(m,n)所平分弦所在直线方程为f(x,y)-f(2m-x,2n-y)=0。并举例说明其应用。  相似文献   

10.
众所周知,过定点P_o(x_o,Y_o)且倾角为a的直线,其参数方程为: x=x_o+tcosa y=y_o+tsina……(A)这里点P(x,y)为(A)上任意一点,t为P点对应参数,它表示向量t=,当t>0时,P在P_o沿直线的上方;t<0时,P在P_o沿直线的下方。若在(A)上存在两点P_1、  相似文献   

11.
中学代数中,有些较为特殊的方程,在实数范围内无解,若依照一般解法,不但演算过程复杂,而且很难判定它们在实数范围内是否无解。本文试图给出这类无解方程的两个判定定理,可以简化解题过程,省时省力。定理1:若方程f(x)=0可表示成f_1[g(x)]=0,且f_1(y)=0无实数根,则方程f(x)=0无实数根。(其中f(x),g(x),f_1(y)均为代数函数,下面定理2假设相同。)。证明:设f(x)=0有实数根x_0,则有: f_1[g(x_0)]=0。令 y_0=g(x_0),则f_1(y_0)=0 即y_0是方程f_1(y)=0的实数根,与题设相矛盾。从而方程f(x)=0无实数根。定理2:若f(x)=0可表示成f_1[g(x)]=0,且f_1(y)=0有实数根y_1,y_2,…,y_n,但对于每一个y_i(1≤i≤n),方程g(x)=y_i都无实数根,则方程f(x)=0无实根。  相似文献   

12.
常看到一些写给中学生的书和数学杂志上介绍直线的参数方程时称经进点P_0(x_0,y_0),倾角为α的直线的参数方程的标准式是:x=x_o tcosα y=y_o tsinα(t是参数),又将这样的形式x=x_o at y=y_o bt(t是参数,a~2 b~2≠1)叫做一般形式.并介绍将一般形式化为标准形式的方法只须在t的系数上除以(a~2 b~2)~(1/2)构成t的系数的平方和为1.即: (t为参数) (※) 为了叙述方便,我们姑且承认其“一般式”和“标准式”的称呼法. 显然,作者称(※)为标准式是认为该方程中参数t的几何意义是直线上P点和P_0(x_0,y_0)点的有向线段的数量.但我认为方程(※)还不一定是直线参数方程的标准式,其原因如下:  相似文献   

13.
§8.增根与遗根的问题 1.我们应该先复习一下代数里学过的方程变形的四条定理: (1)如F(x)是整式,则方程f_1(x)=f_2(x)与方程f_1(x) F(x)=f_2(x) F(x)是同解方程。 (2)如m是不等于0的数,则方程f_1(x)=f_x(x)与方程m·f_1(x)=m·f_2(x)是同解方程。 (3)如F(x)是整式,则方程F(x)·f_1(x)=F(x)·f_2(x)是方程f_1(x)=f_2(x)的结果。 (4)方程f_1~2(x)=f_2~2(x)是方程f_1(x)=f_2(x)的结果。 2.在方程变形时用方程与方程的结果互相替代所产生的增根或遗根。 (1)方程两边同乘以一个含有未知数的整式时,可能产生增根,因为这里是把一个方程的结果去替代原方程。  相似文献   

14.
概念: (1)曲线C上的点的坐标都是方程f(x,y)=0的解; (2)以方程f(x,y)=0的解为坐标的点都是曲线C上的点, 称方程f(x,y)=0为曲线C的方程.充分利用曲线与方程的关系,可简化问题的求解. 例1 过点P(-1,1),作直线与椭圆x2/4+y2/2=1交于A、B两点,若线段AB的中点恰  相似文献   

15.
不少书刊载文讨论了二次曲线弦中点问题的解法,本文拟探讨二次曲线弦的一般分点问题的处理.定理设二次曲线的斜率为k的弦P_1P_2被点P(x_o,y_o)分成定比,则当对X、y的偏导数.证将弦P_1P_2所在直线的参数方程(t为参数,tga=k)代入f(x,y)=0中整理,并注意到依条件,当且仅当时,方程(1)有二不同实根t_1.t_2,据韦达定理得将(2)、(3)代入(4)立得公式1°;将(2)、(3)代入(5)立得公式2°.定理证毕.特别地,若λ=1,则当上述各结论中的分点P(x_o,y_o)既可以是定点,也可以是动点,当P(x_o,y_o)是动点时,可…  相似文献   

16.
高昌 《教育革新》2007,(10):59-59
我们知道,方程f1(x,y) λf2(x,y)=0表示的曲线经过f1(x,y)=0和f2(x,y)=0交点的曲线系方程.利用上述曲线系方程求过已知两曲线交点的新曲线方程,可避免求交点的坐标,其方法如下.  相似文献   

17.
求已知点P(x_0,Y_0)关于直线y=kx m的对称点P'(x,y),通常是解方程组 {1/2(y y_0)=k·1/2(x x_0) m (y-y_0)/(x-x_0)=-(1/k) 但当k=±1时,可直接用对称轴方程y=±x m即x=±y±m代换以求P'点的位置。定理1 若P'(x,y)是点P(x_0,y_0)关于直线y=x m的对称点,则 {x=y_0-m, y=x_0 m。证明比较简单,兹从略。特别地,当m=0时,点p(x_0,y_0)和点p'(y_0,x_0)关于直线y=x对称。推论1 曲线f(x,y)=0关于直线y=x m对称的曲线方程是f(y-m,x m)  相似文献   

18.
大家知道,如果方程f(x,y)=0表示平面内的一条曲线c,那么不等式f(x,y)>0和f(x,y)<0分别表示平面被曲线c分成的两个区域。换言之:点P(x,y)满足f(x,y)>0或f(x,y)<0,则点P(x,y)分别在曲线c分成的两个平面区域内。这一思想用于解题,有时颇有好处。举几例以作说明: 1 用以去绝对值符号 例1 △ABC三边所在直线方程为:AB:2x y-3-25((1/2)2)=0,BC:4x-3y-11 25((1/2)10)=0,AC:x 7y 5 50((1/2)5)=0,求△ABC的内切圆方程。 解 设所求内切圆的圆心I(a,b),半  相似文献   

19.
函数的图象可以作为函数性质的直观解释;反过来,对函数性质的研究,有助于我们准确描绘函数图象。本文介绍函数图象轴对称、中心对称的条件及应用。 1.函数图象成轴对称图形的条件 定理1 设函数y=f(x)的定义域为实数集R,则函数y=f(x)的图象关于x=a成轴对称的充要条件是:对任意x∈R都有 f(a x)=f(a-x)或者f(x)=f(2a-x). 证明 在R上任取一值x_0,对x轴上的点p(a-x_o,0),Q(a x_o,0)则线段PQ的中点M(a,0),故P、Q关于M对称。 充分性 由于f(x_o a)=f(a-x_o),所以点P、Q对应于函数y=f(x)图象上的点分别为P'(a x_o),  相似文献   

20.
设直线l的参数方程为其中(x_o,y_o)是l上的一点,a是l的倾斜角,t是参数。关于直线参数方程的应用,常见的情况是利用参数的几何意义求线段的乘积。如下面的两道题: 1、过P(1,4)作直线l与x轴、y轴的正  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号