首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
本文介绍椭圆与双曲线的一个有趣性质,并说明其应用. 性质 1 设P点是椭圆b2x2+a2y2+a2b2(a>b>0)上异于长轴端点的任一点,F1,F2为其焦点,记∠F1PF2=θ,则|PF1|·|PF2|=2b2/1+cosθ 简证:由椭圆定义有|PF1|+|PF2|=2a (1) 在△PF1F2中,由余弦定理有 |PF1|2+|PF2|2-2|PF1|·|PF2|·cosθ=4e2 (2) (1)2-(2)化简得 |PF1|·|PF2|= 2b2/1+cosθ 性质2 将性质1中的 b2x2+a2y2=a2b2改为b2x2-a2y2=a2b2(a>0,b> 0),其余不  相似文献   

2.
本文介绍椭圆与双曲线的一个有趣性质,并说明其应用. 性质 1 设P点是椭圆b2x2+a2y2=a2b2(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点,记∠F1PF2=θ,则|PF1|·|PF2|=2b2/1+cosθ 简证:由椭圆定义有|PF1|·|PF2|=2a (1) 在△PF1F2中,由余弦定理有|PF1|2+|PF2|2-2|PF1|·|PF2|cosθ=4c2 (2) (1)2-(2)化简得  相似文献   

3.
椭圆是一个完美的几何图形 ,笔者在最近的教学研究中 ,得到了三个与之有关的有趣的轨迹 ,现整理如下 ,供同行人士参考 .     图 1定理 1  (焦点三角形重心轨迹 )设A是椭圆b2 x2 +a2 y2 =a2 b2   (a>b >0 )上一点 ,F1(-c ,0 )、F2 (c ,0 )分别是左、右焦点 ,则△AF1F2 的重心轨迹是椭圆 x2(a/ 3) 2 + y2(b/ 3) 2=1,其离心率与原椭圆离心率相等 .证明 设点G(x ,y)是△AF1F2 重心 ,如图 1.因为点A在椭圆上 ,则A(acosθ ,bsinθ) .由三角形重心坐标公式x=-c+c+acosθ3=acosθ3,y =0 + 0 +bsinθ3=bsinθ3,消去θ整理得  x2(a/ 3) …  相似文献   

4.
代银 《中学教研》2006,(12):38-39
文献[1]给出了双曲线平行弦的2个优美性质:性质1过双曲线ax22-yb22=1(a>0,b>0)顶点A的弦AQ交y轴于点R,过双曲线中心O的半弦OP与AQ平行,则|OP|2=21|AR|·|AQ|.性质2MN是过双曲线x2a2-by22=1(a>0,b>0)焦点F的弦,过双曲线中心O的半弦OP与MN平行,则|OP|2=2a|MN|.在此基础上,笔者对椭圆与抛物线的平行弦做了探究,有些结论令人惊喜.图1定理1如图1,过椭圆x2a2+yb22=1(a>b>0)顶点A的弦AQ交y轴于点R,过椭圆中心O的半弦OP与AQ平行,则|OP|2=21|AR|·|AQ|.证明设OP的参数方程为x=tcosα;y=tsinα,(α为倾斜角,t为参数)将x,y代入椭圆方…  相似文献   

5.
在平面解析几何中,有关圆锥曲线方程的一些应用题,解法是比较复杂的,为了避开繁琐的运算,可应用参数方程解题,把代数运算转化为三角运算。例1.设TT′是椭圆的任一切线介于长轴两端切线AT、A′T′间的线段,则以TT′为直径的圆必过焦点F、F′。证:设椭圆在直角坐标系中的参数方程为x=acosθ y=bsinθ,过椭圆上任一点(acosθ,bsinθ)的切线方程为xcosθ/a+ysinθ/b=1; 因为长轴两端的切线方程为x~2-a~2=0  相似文献   

6.
我们把椭圆x2/a2+y2/b2=1的参数方程{x=acosθ y=bsinθ意一点P(acosθ,bsinθ)的离心角.本文介绍与椭圆的离心角相关的两个有趣性质供读者参考. 性质1 椭圆(或圆)x2/a2+y2/b2=1(a>0,b>0)的两条相交弦AB,CD的四个端点共圆的充要条件是这四个端点的离心角之和为周角的整数倍.  相似文献   

7.
文[1] 给出有关椭圆的两个性质 ,对于这两个性质本文给以引申和证明 .      图 1推论 1 如图1所示 ,椭圆b2 x2 +a2 y2 =a2 b2   (a>0 ,b>0 )过切点M的切线l与以椭圆长轴为直径的圆O从左至右依次交于A、B两点 ,则以线段MF1、MF2 为直径的圆与圆O分别内切于A、B两点 (其中F1、F2为双曲线的左右焦点 ) .证明 设M (acosθ ,bsinθ) ,F1(-c,0 ) ,F2 (c,0 ) ,由文 [1]定理 1证明 ,可知A(ab2 cosθ -a2 csin2 θa2 sin2 θ +b2 cos2 θ ,a2 bsinθ +abcsinθcosθa2 sin2 θ +b2 cos2 θ ) ,B(ab2 cosθ+a2 csin2 θa2 sin2 θ+b2…  相似文献   

8.
椭圆两弦端点处切线的两个有趣性质   总被引:1,自引:0,他引:1  
文[1]给出了椭圆焦点弦的一个优美结论,受其启发并结合文[2],笔者将两焦点替换为两对称点进行探究,发现椭圆两条弦端点处的切线存在着如下两个十分有趣的性质.图1定理1如图1,设P是椭圆x2a2 y2b2=1上任一点,弦P P1,P P2(或其延长线)分别过点M1(-m,0),M2(m,0)(m≠a),P1,P2处的切线交于点P,′则xP xP′=0.证明设P(acos,θbsinθ),P1(a·cos1φ,bsin1φ),P2(acos2φ,bsin2φ),则点P1,P2处的切线分别为bcos1φ·x asin1φ·y=ab,bcos2φ·x asin2φ·y=ab.两切线的交点P′的横坐标xP′=a(sin2φ-sin1φ)sin(2φ-1φ)=acos2φ 1φ2cos2φ-…  相似文献   

9.
定理过双曲线上一点 P 作切线交渐近线于点A、B,则(1)PA=PB;(2)△OAB(O 为双曲线的中心)的面积为定值.证明:不妨设双曲线的方程为 x~2/a~2-y~2/b~2=1(a>0,b>0),渐近线为 y=±(b/a)x,P(x_0,y_0)为双曲线上任一点,则 AB 的方程为 xx_0/a~2-yy_0/b~2=1,与 y=±(b/a)x 联立,  相似文献   

10.
椭圆x^2/a^2 y^2/b^2=1(a>b>0){x=acosθ,y=bsinθ(其中θ是参数,θ∈[0,2π)),故椭圆上的任一点都可以写成P(acosθ,bsinθ),θ∈[0,2π]的形式,下面就其在解题中的主要应用作些归纳,供参考。  相似文献   

11.
从椭圆、双曲线的中心O作两条互相垂直的半径OP、OQ,我们称∠POQ为有心二次曲线的直心角.本文探讨它的性质及其应用. 命题1 若直线l:Ax+By=1与椭圆x2/a2十y2/b2=1(a>b>0)交于P、Q两点,且OP⊥OQ(O为坐标原点),则(1)1/|OP|2+1/|OQ|2=1/a2+1/b2=A2+B2;(2)|PQ|=  相似文献   

12.
定理1圆F以圆锥曲线的一个焦点F为圆中学教研·中学教研·心,以其通径之半为直径.过F的直线l与圆锥曲线、圆F依次交于点A,B,C,D,则|AB|·|CD|为定图1值(其值为圆半径的平方).下面以椭圆为例证明该定理,对于其它圆锥曲线不难类似证明.如图1,设椭圆x2a2+y2b2=1(a>b>0),圆F:(x-c)2+y2=b44a2(其圆心为椭圆的右焦点,直径为通径之半,即r=b22a).过F的直线l与椭圆、圆F依次交于A,B,C,D,欲证|AB|·|CD|=b44a2.证明若直线l的斜率不存在,验证可知结论成立.若直线l的斜率存在,设l的方程为y=k(x-c),①将①代入椭圆方程,整理得(b2+a2k2)x2-2a2ck…  相似文献   

13.
设P(x0,y0)是椭圆x2/a2+y2/b2=1(a>b>0)上的点,F1、F2为其左、右焦点.由椭圆第二定义易得|PF1|=a+ex0,|PF2|=a-ex0(e为离心率).这就是椭圆的焦半径公式,运用它可解决与焦点三角形有关的问题. 1.求坐标取值范围  相似文献   

14.
性质1设F为椭圆的一个焦点,其相应的准线为l,过椭圆上的一点M的切线交准线l于P,则PF⊥MF.证明过椭圆22ax2+by2=1(a>b>0)上点M(a cosθ,bsinθ)的切线为:x cos ysin1aθ+bθ=,则(2,(cos))sinPa b c ac cθθ?.∴sin,MFcoskba cθ=θ?k FP=c?b saicnoθsθ,∴k MF?kFP=?1,∴PF⊥MF.性质1'设F为抛物线y2=2px(p>0)的焦点,过抛物线上任一点(非顶点(0,0)M的切线交准线l于P,则PF⊥MF.证明设抛物线上一点M(t2/(2p),t)(非顶点(0,0)),则过M的切线为:2()2ty p xt=+p,∴22(,)22Pp t pt??,∴22222,MF FP2k pt kt pt p pt=?=??,∴k MF?kFP…  相似文献   

15.
在数学教学中,如能应用参数解极值问题,有时是比较方便的。下面我们举几个例子。 例1 求椭圆内接矩形面积的最大值。 解 设椭圆参数方程为:x=acosθ或y=asinθ θ为参数。由对称性,它的内接矩形面积为:S=4|acosθ·bsinθ|=2ab 。|sin2θ|≤2ab, ∴椭圆内接矩形面积的最大值为2ab。  相似文献   

16.
题设E:x2/a2 y2/b2=1(a>b>0),A(a,0),B(0,6).又P(x0,y0)∈E(x0>0,y0>0),求四边形OAPB的面积S的最大值.解法1 设P(acosθ,bsinθ)∈E,则  相似文献   

17.
1·已知a,b为正实数,且满足a+b=2.(1)求1+1a+11+b的最小值;(2)猜想1+1a2+1+1b2的最小值,并证明;(3)求1+1an+1+1bn的最小值;(4)若a+b=2改成a+b=2p(p≥1),猜想1+1an+1+1bn的最小值.2·已知某椭圆的焦点是F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件|F2A|,|F2B|,|F2C|成等差数列.(1)求该椭圆的方程;(2)求弦AC中点的横坐标;(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.3·设曲线C:y=x2(x>0)上的点P0(x0,y0),过P0作曲线C的切线与x轴交于Q1,过Q…  相似文献   

18.
《考试说明》要求考生:1掌握椭圆、双曲线、抛物线的定义、标准方程及其几何性质和椭圆的参数方程;2掌握圆锥曲线的初步应用.下面介绍圆锥曲线基础试题的考点和解析.考点1 求椭圆坐标的取值范围例1 (2000年新课程卷高考题)椭圆x29+y24=1焦点为F1和F2,点P为椭圆上的动点.当∠F1PF2为钝角时,点P的横坐标的取值范围.解析:设P(x0,y0)是曲线x2a2±y2b2=1上的一点,则|PF1|=|a+ex0|,|PF2|=|a-ex0|(e为离心率,F1、F2为左、右焦点).运用焦半径公式可简捷地解决与焦点三角形有关的问题.解:a=3,b=2,c=5.设P(x,y),由焦半径公式知|PF1|=3+53x.|…  相似文献   

19.
本文探索了椭圆、双曲线焦半径与焦半径夹角的关系,得到如下两个结论. 定义圆锥曲线上一点与其焦点的连线段叫做焦半径. 定理1 P(x0,y0)是椭圆x2/a2 y2/b2=1(a>b>0)上一点,F1(-c,0),F2(c,0)是左右焦点,设|PF1|=r1,|PF2|=r2,∠F1PF2=θ,则 2b2/1 cosθ=r1r2,且tanθ/2=c|y0|/b2. 证:如图,在△F1PF2中有  相似文献   

20.
文[1]推出了如下两个重要定理: 定理1 设G,H是椭圆x2/a2+y2/b2=1(a>b>0)的两条准线与x轴的交点,P是椭圆上的一点,e是离心率,c是半焦距,∠GPH=θ,则θ为钝角,且当e2≥1/2(5~(1/2)-1)时有cotθ≤-e(当且仅当|yp|=ab2/c2时等号成立).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号