首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
BackgroundCatalase (CAT) is an important enzyme that degrades H2O2 into H2O and O2. To obtain an efficient catalase, in this study, a new strain of high catalase-producing Serratia marcescens, named FZSF01, was screened and its catalase was purified and characterized.ResultsAfter optimization of fermentation conditions, the yield of catalase produced by this strain was as high as 51,468 U/ml. This catalase was further purified using two steps: DEAE-fast flow and Sephedex-G150. The purified catalase showed a specific activity of 197,575 U/mg with a molecular mass of 58 kDa. This catalase exhibited high activity at 20–70°C and pH 5.0–11.0. Km of the catalase was approximately 68 mM, and Vmax was 1886.8 mol/min mg. This catalase was further identified by LC–MS/MS, and the encoding gene was cloned and expressed in Escherichia coli BL21 (DE3) with a production of 17,267 ± 2037 U/ml.ConclusionsTo our knowledge, these results represent one of the highest fermentation levels reported among current catalase-producing strains. This FZSF01 catalase may be suitable for several industrial applications that comprise exposure to alkaline conditions and under a wide range of temperatures.  相似文献   

2.
BackgroundBiomineralization is a significant process performed by living organisms in which minerals are produced through the hardening of biological tissues. Herein, we focus on calcium carbonate precipitation, as part of biomineralization, to be used in applications for environmental protection, material technology, and other fields. A strain GM-1, Microbacterium sp. GM-1, isolated from active sludge, was investigated for its ability to produce urease and induce calcium carbonate precipitation in a metabolic process.ResultsIt was discovered that Microbacterium sp. GM-1 resisted high concentrations of urea up to 60 g/L. In order to optimize the calcification process of Microbacterium sp. GM-1, the concentrations of Ni2 + and urea, pH value, and culture time were analyzed through orthogonal tests. The favored calcite precipitation culture conditions were as follows: the concentration of Ni2 + and urea were 50 μM and 60 g/L, respectively, pH of 10, and culture time of 96 h. Using X-ray diffraction analysis, the calcium carbonate polymorphs produced by Microbacterium sp. GM-1 were proven to be mainly calcite.ConclusionsThe results of this research provide evidence that Microbacterium sp. GM-1 can biologically induce calcification and suggest that strain GM-1 may play a potential role in the synthesis of new biominerals and in bioremediation or biorecovery.  相似文献   

3.
BackgroundSulphur-oxidizing microorganisms are widely used in the biofiltration of total reduced sulphur compounds (odorous and neurotoxic) produced by industries such as the cellulose and petrochemical industries, which include high-temperature process steps. Some hyperthermophilic microorganisms have the capability to oxidize these compounds at high temperatures (> 60°C), and archaea of this group, for example, Sulfolobus metallicus, are commonly used in biofiltration technology.ResultsIn this study, a hyperthermophilic sulphur-oxidizing strain of archaea was isolated from a hot spring (Chillán, Chile) and designated as M1. It was identified as archaea of the genus Sulfolobus (99% homology with S. solfataricus 16S rDNA). Biofilms of this culture grown on polyethylene rings showed an elemental sulphur oxidation rate of 95.15 ± 15.39 mg S l-1 d-1, higher than the rate exhibited by the biofilm of the sulphur-oxidizing archaea S. metallicus (56.8 ± 10.91 mg l-1 d-1).ConclusionsThe results suggest that the culture M1 is useful for the biofiltration of total reduced sulphur gases at high temperatures and for other biotechnological applications.  相似文献   

4.
BackgroundA biosurfactant produced by Pseudomonas aeruginosa cultivated in a low-cost medium formulated with 2.5% vegetable oil refinery residue and 2.5% corn steep liquor and distilled water was employed to stabilize silver nanoparticles in the liquid phase. The particles were initially synthesized using NaBH4 as reducing agent in biosurfactant reverse micelles and were extracted from the micellar solution to disperse in heptane.ResultsA silver particle size in the range of 1.13 nm was observed. The UV–vis absorption spectra proposed that silver nanoparticles could be formed in the reverse micelles and relatively stabilized for at least 3 months without passivator addition. The Transmission Electron Microscope (TEM) shows that the silver nanoparticles are of spherical form and relatively uniform.ConclusionsThis process provided a simpler route for nanoparticle synthesis compared to existing systems using whole organisms or partially purified biological extracts, showing that the low-cost biosurfactant can be used for nanoparticle synthesis as a non-toxic and biodegradable stabilizing agent.  相似文献   

5.
BackgroundBiotechnological processes are costly, especially for the production of biosurfactants. The successful production of a biosurfactant is dependent on the development of processes using low cost raw materials. Considering the importance of the characteristics of a biosurfactant to facilitate its industrial application, the properties of the biosurfactant produced by Candida lipolytica through previously optimized medium have been established.ResultsThe yeast was grown for 72 h to determine the kinetics of growth and production. The surface tension of the cell-free broth was reduced from 55 to 25 mN/m. The yield of biosurfactant was 8.0 g/l with a CMC of 0.03%. The biosurfactant was characterized as an anionic lipopeptide composed of 50% protein, 20% lipids, and 8% of carbohydrates.ConclusionsThe isolated biosurfactant showed no toxicity against different vegetable seeds: Brassica oleracea, Solanum gilo and Lactuca sativa L. and the micro-crustacean Artemia salina. The properties of the biosurfactant produced suggest its potential application in industries that require the use of effective compounds at low cost.  相似文献   

6.
BackgroundXylitol is a five carbons polyol with promising medical applications. It can be obtained from chemical d-xylose reduction or by microbial fermentation of Sugarcane Bagasse Hemicellulosic Hydrolysate. For this last process, some microbial inhibitors, as furfural, constitute severe bottleneck. In this case, the use of strains able to produce xylitol simultaneously to furfural neutralization is an interesting alternative. A wild-type strain of Geotrichum sp. was detected with this ability, and its performance in xylitol production and furfural consumption was evaluated. Furthermore, were analyzed its degradation products.ResultsGeotrichum sp. produced xylitol from d-xylose fermentation with a yield of 0.44 g·g-1. Furfural was fully consumed in fermentation assay and when provided in the medium until concentration of 6 g·L-1. The furfural degradation product is not an identified molecule, presenting a molecular weight of 161 g·mol-1, an uncommon feature for the microbial metabolism of this product.ConclusionThis strain presents most remarkable potential in performing furfural consumption simultaneous to xylitol production. Subsequent efforts must be employed to establish bioprocess to simultaneous detoxification and xylitol production by Geotrichum sp.  相似文献   

7.
BackgroundRhodotorula glutinis is capable of synthesizing numerous valuable metabolites with extensive potential industrial usage. This paper reports the effect of initial culture medium pH on growth and protein, lipid, and carotenoid biosynthesis by R. glutinis.ResultsThe highest biomass yield was obtained in media with pH 4.0–7.0, and the value after 72 h was 17.2–19.4 gd.w./L. An initial pH of the medium in the range of 4.0–7.0 has no significant effect on the protein (38.5–41.3 g/100 gd.w.), lipid (10.2–12.7 g/100 gd.w.), or carotenoid (191.7–202.9 μg/gd.w.) content in the biomass or on the profile of synthesized fatty acids and carotenoids. The whole pool of fatty acids was dominated by oleic (48.1–53.4%), linoleic (21.4–25.1%), and palmitic acids (13.0–15.8%). In these conditions, the yeast mainly synthesized torulene (43.5–47.7%) and β-carotene (34.7–38.6%), whereas the contribution of torularhodin was only 12.1–16.8%. Cultivation in medium with initial pH 3.0 resulted in a reduction in growth (13.0 gd.w./L) and total carotenoid (115.8 μg/gd.w.), linoleic acid (11.5%), and torularhodin (4.5%) biosynthesis.ConclusionThe different values of initial pH of the culture medium with glycerol and deproteinized potato wastewater had a significant effect on the growth and protein, lipid, and carotenoid biosynthesis by R. glutinis.  相似文献   

8.
BackgroundFermentation process development has been very important for efficient ethanol production. Improvement of ethanol production efficiency from sweet sorghum juice (SSJ) under normal gravity (NG, 160 g/L of sugar), high gravity (HG, 200 and 240 g/L of sugar) and very high gravity (VHG, 280 and 320 g/L of sugar) conditions by nutrient supplementation and alternative feeding regimes (batch and fed-batch systems) was investigated using a highly ethanol-tolerant strain, Saccharomyces cerevisiae NP01.ResultsIn the batch fermentations without yeast extract, HG fermentation at 200 g/L of sugar showed the highest ethanol concentration (PE, 90.0 g/L) and ethanol productivity (QE, 1.25 g/L·h). With yeast extract supplementation (9 g/L), the ethanol production efficiency increased at all sugar concentrations. The highest PE (112.5 g/L) and QE (1.56 g/L·h) were observed with the VHG fermentation at 280 g/L of sugar. In the fed-batch fermentations, two feeding regimes, i.e., stepwise and continuous feedings, were studied at sugar concentrations of 280 g/L. Continuous feeding gave better results with the highest PE and QE of 112.9 g/L and 2.35 g/L·h, respectively, at a feeding time of 9 h and feeding rate of 40 g sugar/h.ConclusionsIn the batch fermentation, nitrogen supplementation resulted in 4 to 32 g/L increases in ethanol production, depending on the initial sugar level in the SSJ. Under the VHG condition, with sufficient nitrogen, the fed-batch fermentation with continuous feeding resulted in a similar PE and increased QP by 51% compared to those in the batch fermentation.  相似文献   

9.
BackgroundTraditional methods of obtaining arsenic have disadvantages such as high cost and high energy consumption. Realgar is one of the most abundant arsenic sulphide minerals and usually treated as waste in industry. The aim of the present study was to screen an arsenic tolerant bacterium used for bioleaching arsenic from realgar.ResultsAn acidophilic iron-oxidizing bacterium BYQ-12 was isolated from Wudalianchi volcanic lake in northeast China. BYQ-12 was a motile, rod-shaped gram-negative bacterium with an optimum growth at 30°C and pH 2.5. 16S rDNA phylogeny showed that BYQ-12 was a new strain of Acidithiobacillus ferrooxidans. The inhibitory concentrations (ICs) of arsenite and arsenate were 32 and 64 mM, respectively. A significant second-order model was established using a Box–Behnken design of response surface methodology (BBD-RSM) and it estimated that a maximum arsenic bioleaching rate (73.97%) could be obtained when the pulp concentration, pH and initial ferrous ion concentration were set at optimized values of 0.95% w/v, 1.74 and 3.68 g/L, respectively. SEM, EDS and XRD analyses also revealed that there was direct bioleaching besides indirect electrochemical leaching in the arsenic bioleaching system.ConclusionFrom this work we were successful in isolating an acidophilic, arsenic tolerant ferrous iron-oxidizing bacterium. The BBD-RSM analysis showed that maximum arsenic bioleaching rate obtained under optimum conditions, and the most effective factor for arsenic leaching was initial ferrous ion concentration. These revealed that BYQ-12 could be used for bioleaching of arsenic from arsenical minerals.  相似文献   

10.
BackgroundFatty acid synthase (FAS) is a key enzyme of de novo lipogenesis (DNL), which has been cloned from several species: Gallus gallus, Mus musculus, Homo sapiens, but not from Anas platyrhynchos. The current study was conducted to obtain the full-length coding sequence of Peking duck FAS and investigate its expression during adipocyte differentiation.ResultsWe have isolated a 7654 bp fragment from Peking duck adipocytes that corresponds to the FAS gene. The cloned fragment contains an open reading frame of 7545 bp, encodes a 2515 amino acid protein, and displays high nucleotide and amino acid homology to avian FAS orthologs. Twelve hour treatment of oleic acid significantly up-regulated the expression of FAS in duck preadipocytes (P < 0.05). However, 1000 μM treatment of oleic acid exhibited lipotoxic effect on cell viability (P < 0.05). In addition, during the first 24 h of duck adipocyte differentiation FAS was induced; however, after 24 h its expression level declined (P < 0.05).ConclusionWe have successfully cloned and characterized Peking duck FAS. FAS was induced during adipocyte differentiation and by oleic acid treatment. These findings suggest that Peking duck FAS plays a similar role to mammalian FAS during adipocyte differentiation.  相似文献   

11.
BackgroundMucor indicus is a dimorphic fungus used in the production of ethanol, oil, protein, and glucosamine. It can ferment different pentoses and hexoses; however, the yields of products highly depend on the nutrients and cultivation conditions. In this study, the effects of different morphologic forms, cultivation time and temperature, presence or absence of oxygen, carbon sources, and concentration of nitrogen source on the products of M. indicus were investigated.ResultsThe fungus with all morphologies produced high yields of ethanol, in the range of 0.32–0.43 g/g, on glucose. However, the fungus with filamentous morphology produced higher amounts of oil, protein, phosphate, and glucosamine together with ethanol, compared with other morphologies. A higher amount of oil (0.145 g/g biomass) was produced at 28°C, while the best temperature for protein and glucosamine production was 32 and 37°C, respectively. Although ethanol was produced at a higher yield (0.44 g/g) under anaerobic conditions compared with aerobic conditions (yield of 0.41 g/g), aerobic cultivation resulted in higher yields of protein (0.51 g/g biomass), glucosamine (0.16 g/g alkali insoluble material, AIM), and phosphate (0.11 g/g AIM).ConclusionsIt is not possible to have the maximum amounts of the products simultaneously. The fermentation conditions and composition of culture media determine the product yields. Carbon source type and the addition of nitrogen source are among the most influencing factors on the product yields. Moreover, all measured products were made with higher yields in cultivation on glucose, except glucosamine, which was produced with higher yields on xylose.  相似文献   

12.
BackgroundLysozyme plays a crucial role in innate immunity with its well-recognized bacteriolytic activity. In this study, the influence of expression parameters (inoculation volume, culture volume, growth time, induction temperature and time, initial pH and methanol concentration) on human lysozyme (HLZ) production in recombinant P. pastoris SMD1168 was investigated through Plackett–Burman (PB) design and response surface methodology (RSM).ResultsIt was revealed that induction temperature, induction time and culture volume had significant influence (P < 0.01) on HLZ expression level, which were elected for further optimization with three-dimensional response surface designs for enhanced HLZ production. The highest lysozyme activity reached 3301 U/mL under optimized conditions (at 23.5°C for 90 h with culture volume of 48 mL) in shake flask, which increased 2.2 fold compared with that achieved with the standard protocol (Invitrogen). When high-cell-density fermentation of the recombinant Pichia pastoris was performed in a 15 L fermenter under optimized conditions, the extracellular lysozyme activity reached 47,680 U/mL. SDS-PAGE analysis of the product demonstrated that HLZ was produced as a single major protein with a molecular weight of approximately 14.7 kDa, consistent with its expected size.ConclusionsThe results indicated that the optimized culture conditions using PB design and RSM significantly enhanced the expression level of HLZ, and the Pichia expression system for HLZ production was successful and industrially promising.  相似文献   

13.
BackgroundGABA (γ-aminobutyric acid) is a four-carbon nonprotein amino acid that has hypotensive, diuretic, and tranquilizing properties. Glutamate decarboxylase (GAD) is the key enzyme to generate GABA. A simple and economical method of preparing and immobilizing GAD would be helpful for GABA production. In this study, the GAD from Lactobacillus fermentum YS2 was expressed under the control of a stress-inducible promoter and was purified and immobilized in a fusion form, and its reusability was investigated.ResultsThe fusion protein CBM-GAD was expressed in Escherichia coli DH5α carrying pCROCB-gadB, which contained promoter PrpoS, cbm3 (family 3 carbohydrate-binding module from Clostridium thermocellum) coding sequence, the gadB gene from L. fermentum YS2 coding for GAD, and the T7 terminator. After a one-step purification of CBM-GAD using regenerated amorphous cellulose (RAC) as an adsorbent, SDS-PAGE analysis revealed a clear band of 71 kDa; the specific activity of the purified fusion protein CBM-GAD reached 83.6 ± 0.7 U·mg-1. After adsorption onto RAC, the immobilized GAD with CBM3 tag was repeatedly used for GABA synthesis. The protein-binding capacity of RAC was 174 ± 8 mg·g-1. The immobilized CBM-GAD could repeatedly catalyze GABA synthesis, and 8% of the initial activities was retained after 10 uses. We tested the conversion of monosodium glutamate to GABA by the immobilized enzyme; the yield reached 5.15 g/L and the productivity reached 3.09 g/L·h.ConclusionsRAC could be used as an adsorbent in one-step purification and immobilization of CBM-GAD, and the immobilized enzyme could be repeatedly used to catalyze the conversion of glutamate to GABA.  相似文献   

14.
BackgroundAt present, species known as camote de cerro (Dioscorea spp.) are found only in the wilderness in Mexico, but their populations are extremely depleted because they are indiscriminately collected, it is urgent to evaluate the conservation status of these plants in order to design conservation genetics programs. In this study, genetic diversity parameters along with cluster analysis based on Jaccard's coefficient were estimated with the objective to assess the efficiency of Random Amplified Polymorphic DNA (RAPD), Inter Simple Sequence Repeat (ISSR), Amplified Fragment Length Polymorphism (AFLP) and Inverse Sequence Tagged Repeat (ISTR) molecular DNA markers in the Dioscorea genus.ResultsThe polymorphic information contents were quite similar for all markers (≈ 0.48). Genetic variation of Dioscorea spp., in terms of average heterozygosity was lower with ISTR (0.36), and higher when other markers were used (RAPD = 0.43; ISSR = 0.45 and AFLP = 0.47).ConclusionThis indicates an important level of genetic differences despite the fact that the plant is asexually propagated. Based on the diversity statistics, any marker tested in present work can be recommended for use in large-scale genetic studies of populations. However, the low correlations among different molecular marker systems show the importance of the complementarity of the information that is generated by different markers for genetic studies involving estimation of polymorphism and relationships.  相似文献   

15.
BackgroundEndophytic bacteria are ubiquitous in all plant species contributing in host plant's nutrient uptake and helping the host to improve its growth. Moringa peregrina which is a medicinal plant, growing in arid region of Arabia, was assessed for the presence of endophytic bacterial strains.ResultsPCR amplification and sequencing of 16S rRNA of bacterial endophytes revealed the 5 endophytic bacteria, in which 2 strains were from Sphingomonas sp.; 2 strains from Bacillus sp. and 1 from Methylobacterium genus. Among the endophytic bacterial strains, a strain of Bacillus subtilis LK14 has shown significant prospects in phosphate solubilization (clearing zone of 56.71 mm after 5 d), ACC deaminase (448.3 ± 2.91 nM α-ketobutyrate mg- 1 h- 1) and acid phosphatase activity (8.4 ± 1.2 nM mg- 1 min- 1). The endophytic bacteria were also assessed for their potential to produce indole-3-acetic acid (IAA). Among isolated strains, the initial spectrophotometry analysis showed significantly higher IAA production by Bacillus subtilis LK14. The diurnal production of IAA was quantified using multiple reactions monitoring method in UPLC/MS–MS. The analysis showed that LK14 produced the highest (8.7 μM) IAA on 14th d of growth. Looking at LK14 potentials, it was applied to Solanum lycopersicum, where it significantly increased the shoot and root biomass and chlorophyll (a and b) contents as compared to control plants.ConclusionThe study concludes that using endophytic bacterial strains can be bio-prospective for plant growth promotion, which might be an ideal strategy for improving growth of crops in marginal lands.  相似文献   

16.
BackgroundChlorophytum borivilianum is a rare medicinal plant originally distributed throughout the forest of India. The tubers of C. borivilianum are used as an aphrodisiac and impotence supplement. The propagation of C. borivilianum is possible through seeds and tubers, but conventional methods may take several months. Hence in vitro technique of shoot regeneration could be an efficient alternative means of propagating the species. Latest study reported microtuberization of C. borivilianum but there is no sufficient study on a rapid method for shoot multiplication and elongation.ResultsYoung shoot buds of C. borivilianum were cultured on MS medium containing 6-benzylaminopurine (BAP) and Kinetin (Kn), both at 0, 8.88, 17.8 and 26.6 μM, either individually or in combinations. Proliferated shoots were subcultured on fresh medium of the same constituents on week 3 of culture for further shoot multiplication and elongation. BAP alone (8.88–26.6 μM) was significantly effective on shoot multiplication, while Kn alone (8.88–26.6 μM) was significantly effective on shoot elongation compared to the control containing MS basal medium without any plant growth regulator. However, combination of both cytokinins stimulated an interaction producing higher shoot number and shoot length compared to their individual application.ConclusionsThe most suitable combination was 8.88 μM BAP + 8.88 μM Kn, reaching a mean shoot number of 10.83 and shoot length of 6.85 cm.  相似文献   

17.
BackgroundThe effect of diverse oxygen transfer coefficient on the l-erythrulose production from meso-erythritol by a newly isolated strain, Gluconobacter kondonii CGMCC8391 was investigated. In order to elucidate the effects of volumetric mass transfer coefficient (kLa) on the fermentations, baffled and unbaffled flask cultures, and fed-batch cultures were developed in present work.ResultsWith the increase of the kLa value in the fed-batch culture, l-erythrulose concentration, productivity and yield were significantly improved, while cell growth was not the best in the high kLa. Thus, a two-stage oxygen supply control strategy was proposed, aimed at achieving high concentration and high productivity of l-erythrulose. During the first 12 h, kLa was controlled at 40.28 h-1 to obtain high value for cell growth, subsequently kLa was controlled at 86.31 h-1 to allow for high l-erythrulose accumulation.ConclusionsUnder optimal conditions, the l-erythrulose concentration, productivity, yield and DCW reached 207.9 ± 7.78 g/L, 6.50 g/L/h, 0.94 g/g, 2.68 ± 0.17 g/L, respectively. At the end of fermentation, the l-erythrulose concentration and productivity were higher than those in the previous similar reports.  相似文献   

18.
BackgroundPoly(dl-lactic acid), or PDLLA, is a biodegradable polymer that can be hydrolyzed by various types of enzymes. The protease produced by Actinomadura keratinilytica strain T16-1 was previously reported to have PDLLA depolymerase activity. However, few studies have reported on PDLLA-degrading enzyme production by bacteria. Therefore, the aims of this study were to determine a suitable immobilization material for PDLLA-degrading enzyme production and optimize PDLLA-degrading enzyme production by using immobilized A. keratinilytica strain T16-1 under various fermentation process conditions in a stirrer fermenter.ResultsAmong the tested immobilization materials, a scrub pad was the best immobilizer, giving an enzyme activity of 30.03 U/mL in a shake-flask scale. The maximum enzyme activity was obtained at aeration 0.25 vvm, agitation 170 rpm, 45°C, and 48 h of cultivation time. Under these conditions, a PDLLA-degrading enzyme production of 766.33 U/mL with 15.97 U/mL·h productivity was observed using batch fermentation in a 5-L stirrer fermenter. Increased enzyme activity and productivity were observed in repeated-batch (942.67 U/mL and 19.64 U/mL·h) and continuous fermentation (796.43 U/mL and 16.58 U/mL·h) at a dilution rate of 0.013/h. Scaled-up production of the enzyme in a 10-L stirrer bioreactor using the optimized conditions showed a maximum enzyme activity of 578.67 U/mL and a productivity of 12.06 U/mL·h.ConclusionsThis research successfully scaled-up the enzyme production to 5 and 10 L in a stirrer fermenter and is helpful for many applications of poly(lactic acid).  相似文献   

19.
BackgroundThe yield of almonds [Prunus dulcis (Mill.) D.A. Webb] could be low due to climatic problems and any factor improving kernel size and weight, such as the use of plant bioregulators (PBRs), should be beneficial.ResultsThree plant bioregulators: 24-epibrassinolide (BL), gibberellic acid (GA3) and kinetin (KN) were applied at three spray concentrations to Non Pareil and Carmel cultivars, at two phenological stages during bloom, in the 2014 and 2015 seasons. The results showed significant differences (P < 0.0001). For total dry weight of Non Pareil, the best treatment was BL (30 mg·L-1), with an average of 1.45 g, while the control was 1.30 g, at pink button during 2015. For Carmel, the best dry weight was 1.23 g, achieved with BL (30 mg·L-1) at fallen petals in both seasons. The average dry weight of the controls varied between 1.13 and 1.18 g. The greatest almond lengths and widths in Non Pareil were 24.98 mm and 15.05 mm, achieved with BL (30 mg·L-1) and KN (50 μL·L-1) treatments, respectively, applied at pink button in 2015. In Carmel, the greatest length and width were 24.38 and 13.44 mm, obtained with BL (30 mg·L-1) applied at the stages of pink button and fallen petals, respectively, in 2015. The control reached lengths between 22.33 and 23.38 mm, and widths between 11.99 and 12.93 mm.ConclusionsThe use of the bioregulators showed significant favorable effects on dry weight, length and width of kernels at harvest, in both cultivars.  相似文献   

20.
BackgroundTreating latex rubber sheet wastewater often leads to the generation of a rotten-egg odor from toxic H2S. To increase the treatment efficiency and eliminate H2S, purple nonsulfur bacteria (PNSB), prepared by supplementing non-sterile rubber sheet wastewater (RAW) with fermented pineapple extract (FPE), were used to treat this wastewater under microaerobic light conditions. The following 3 independent variables: chemical oxygen demand (COD), initial pH and FPE dose were investigated using the Box–Behnken design to find optimal conditions for stimulating the growth of indigenous PNSB (PNSBsi).ResultsThe addition of 2.0% FPE into RAW, which had a COD of 2000 mg L- 1 and an initial pH of 7.0, significantly decreased oxidation reduction potential (ORP) value and stimulated PNSBsi to reach a maximum of 7.8 log cfu mL- 1 within 2 d. Consequently, these PNSBsi, used as inoculants, were investigated for their ability to treat the wastewater under microaerobic light conditions. A central composite design was used to determine the optimal conditions for the wastewater treatment. These proved to be 7% PNSBsi, 0.8% FPE and 4 d retention time and this combination resulted in a reduction of 91% for COD, 75% for suspended solids, 61% for total sulfide while H2S was not detected. Results of abiotic control and treatment sets indicated that H2S was produced by heterotrophic bacteria and it was then effectively deactivated by PNSBsi.ConclusionsThe stimulation of PNSB growth by FPE under light condition was to lower ORP, and PNSBsi proved to be effective for treating the wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号