首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
BackgroundCDIPT (CDP-diacylglycerol–inositol 3-phosphatidyltransferase, EC 2.7.8.11) was found on the cytoplasmic side of the Golgi apparatus and the endoplasmic reticulum. It was an integral membrane protein performing the last step in the de novo biosynthesis of phosphatidylinositol (PtdIns). In recent years, PtdIns has been considered to play an essential role in energy metabolism, fatty acid metabolic pathway and intracellular signal transduction in eukaryotic cells.ResultsIn this study, the results of real-time polymerase chain reaction (PCR) showed that the expression of CDIPT gene was remarkably different in diverse tissues. We also detected the polymorphism of bovine CDIPT gene and analyzed its association with body measurement and meat quality traits of Qinchuan cattle. Blood samples were obtained from 638 Qinchuan cattle aged from 18 to 24 months. DNA sequencing and PCR-restriction fragment length polymorphism (RFLP) were used to find CDIPT gene single nucleotide polymorphism (SNP). Three SNPs g.244T>C (NCBI: rs42069760), g.1496G>A and g.1514G>A were found in this study. g.244T>C located at 5′untranslated region (5′UTR) of exon 1 showed three genotypes: TT, TC and CC. g.1496G>A and g.1514G>A detected the first time were located in intron 3 and showed the same genotypes: GG, GA and AA.ConclusionsAnalysis results showed that these three SNPs were significantly associated with body measurement traits (BMTs) and meat quality traits (MQTs). We suggested that CDIPT gene may have potential effects on BMTs and MQTs and can be used for marker-assisted selection.  相似文献   

2.
BackgroundThe salivary glands of Lucilia sericata are the first organs to express specific endopeptidase enzymes. These enzymes play a central role in wound healing, and they have potential to be used therapeutically.MethodsRapid amplification of cDNA ends and rapid amplification of genomic ends were used to identify the coding sequence of MMP-1 from L. sericata. Different segments of MMP1 gene, namely the middle part, 3′ end, and 5′ end, were cloned, sequenced, and analyzed using bioinformatics tools to determine the distinct features of MMP-1 protein.ResultsAssembling the different segments revealed that the complete mRNA sequence of MMP-1 is 1932 bp long. CDS is 1212 bp long and is responsible for the production of MMP-1 of 404 amino acid residues with a predicted molecular weight of 45.1 kDa. The middle part, 3′ end, and 5′ end sequences were 933, 503, and 496 bp. In addition, it was revealed that the MMP-1 genomic sequence includes three exons and two introns. Furthermore, the three-dimensional structure of L. sericata MMP-1 protein was evaluated, and its alignment defined that it has high similarity to chain A of human MMP-2 with 100% confidence, 72% coverage, and 38% identity according to the SWISS-MODEL modeling analysis.ConclusionsMMP-1 of L. sericata has a close relationship with its homologs in invertebrates and other insects. The present study significantly contributes to understanding the function, classification, and evolution of the characterized MMP-1 from L. sericata and provides basic required information for the development of an effective medical bioproduct.  相似文献   

3.
The dopamine receptor-D4 and the dopamine transporter have been investigated for their role in attention deficit hyperactivity disorder (ADHD) in children. Reports of their genetic association with ADHD have shown mixed results. The aim of the study was to evaluate the association of variable number tandem repeats (VNTRs) of the DRD4 and DAT1 genes with ADHD in children. A pilot 1:1 case control study, with 44 clinically confirmed ADHD cases and 44 age/gender matched healthy controls, was conducted at a tertiary care centre in Mumbai. Variable number tandem repeats of DRD4 exon 3, DAT1 intron 8 and 3′UTR were genotyped by PCR-AGE. Several allele repeats of the genes were observed in the screened subjects. Statistical significance was observed for the 10R/10R genotype of the DAT1 3′UTR VNTR between cases and controls.  相似文献   

4.
BackgroundMaize is one of the most important crops worldwide and has been a target of nuclear-based transformation biotechnology to improve it and satisfy the food demand of the ever-growing global population. However, the maize plastid transformation has not been accomplished due to the recalcitrant condition of the crop.ResultsIn this study, we constructed two different vectors with homologous recombination sequences from maize (Zea mays var. LPC13) and grass (Bouteloua gracilis var. ex Steud) (pZmcpGFP and pBgcpGFP, respectively). Both vectors were designed to integrate into rrn23S/rrn16S from an inverted repeat region in the chloroplast genome. Moreover, the vector had the mgfp5 gene driven by Prrn, a leader sequence of the atpB gene and a terminator sequence from the rbcL gene. Also, constructs have an hph gene as a selection marker gene driven by Prrn, a leader sequence from rbcL gene and a terminator sequence from the rbcL gene. Explants of maize, tobacco and Escherichia coli cells were transformed with both vectors to evaluate the transitory expression–an exhibition of green and red fluorescent light under epifluorescence microscopy. These results showed that both vectors were expressed; the reporter gene in all three organisms confirmed the capacity of the vectors to express genes in the cell compartments.ConclusionsThis paper is the first report of transient expression of GFP in maize embryos and offers new information for genetically improving recalcitrant crops; it also opens new possibilities for the improvement in maize chloroplast transformation with these vectors.How to cite: Arévalo-Gallegos S, Varela-Rodríguez H, Lugo-Aguilar H, et al. Transient expression of a green fluorescent protein in tobacco and maize chloroplast. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.008  相似文献   

5.
BackgroundCurrent commercial production of isomalto-oligosaccharides (IMOs) commonly involves a lengthy multistage process with low yields.ResultsTo improve the process efficiency for production of IMOs, we developed a simple and efficient method by using enzyme cocktails composed of the recombinant Bacillus naganoensis pullulanase produced by Bacillus licheniformis, α-amylase from Bacillus amyloliquefaciens, barley bran β-amylase, and α-transglucosidase from Aspergillus niger to perform simultaneous saccharification and transglycosylation to process the liquefied starch. After 13 h of reacting time, 49.09% IMOs (calculated from the total amount of isomaltose, isomaltotriose, and panose) were produced.ConclusionsOur method of using an enzyme cocktail for the efficient production of IMOs offers an attractive alternative to the process presently in use.  相似文献   

6.
BackgroundWe aimed to test the possibility of improving polypeptide production from soybean meal fermentation by engineered Aspergillus oryzae strains. Four different protease genes were cloned and transformed into wild-type A. oryzae, and the engineered A. oryzae strains were then used for soybean meal fermentation.ResultsThe results showed different degrees of improvement in the protease activity of the four transformants when compared with wild-type A. oryzae. A major improvement in the polypeptide yield was achieved when these strains were used in soybean meal fermentation. The polypeptide conversion rate of one of the four transformants, A. oryzae pep, reached 35.9%, which was approximately twofold higher than that exhibited by wild-type A. oryzae. Amino acid content analysis showed that the essential amino acid content and amino acid composition of the fermentation product significantly improved when engineered A. oryzae strains were used for soybean meal fermentation.ConclusionsThese findings suggest that cloning of microbial protease genes with good physicochemical properties and expressing them in an ideal host such as A. oryzae is a novel strategy to enhance the value of soybean meal.  相似文献   

7.
8.
BackgroundTransmembrane protein 95 (TMEM95) plays a role in male fertility. Previous studies showed that genes with a significant impact on reproductive traits can also affect the growth traits of livestock. Thus, we speculated that the genetic variation of TMEM95 gene may have effects on growth traits of cattle.ResultsTwo SNPs were genotyped. The rs136174626 and rs41904693 were in the intron 4 and 3′-untranslated region, respectively. The linkage disequilibrium analysis illustrated that these two loci were not linked. The rs136174626 was associated with six growth traits of Nanyang cattle, four traits of Luxi cattle, and three traits of Ji’an cattle. For rs41904693 locus, the GG individuals had greater body height and abdominal girth in Ji’ an cattle than TT and TG individuals. In Jinnan cattle, GG and TT individuals had greater body height, height at hip cross, body length, and heart girth than TG individuals. The potential splice site prediction results suggest that the rs136174626 may influence the splicing efficiency of TMEM95, and the miRNA binding site prediction results showed that the rs41904693 may influence the expression of TMEM95 by affecting the binding efficiency of Bta-miR-1584 and TMEM95 3′-UTR.ConclusionsThe findings of the study suggested that the two SNPs in TMEM95 could be a reliable basis for molecular breeding in cattle.How to cite: Guo X, Zhang S, Yang H, et al. Bovine TMEM95 gene: Polymorphisms detecting in five Chinese indigenous cattle breeds and their association with growth traits. Electron J Biotechnol 2021;51. https://doi.org/10.1016/j.ejbt.2021.03.004  相似文献   

9.
10.
BackgroundOrnithine decarboxylase antizyme 1 (OAZ1) is an important regulator of polyamine synthesis and uptake. Our previous studies indicated that high OAZ1 expression in the ovaries of laying geese is responsible for poor egg production. In the present study, the molecular characterization of goose OAZ1 gene was analyzed, as well as the expression profile in various follicular tissues.ResultsAn 873-bp cDNA sequence of the OAZ1 gene (Accession No. KC845302) with a + 1 frameshift site (+ 175T) was obtained. The sequence consisted of a 652-bp two overlapping open reading frames (a putative protein with 216 amino acids). The OAZ domain, OAZ signature and OAZ super family domain were prominent conserved regions among species. As the follicle size increased, OAZ1 abundance showed an increasing trend during follicular development, while it decreased during follicular regression. The level of OAZ1 mRNA expression was the lowest in the fifth largest preovulatory follicle, and was 0.65-fold compared to the small white follicle (P < 0.05). OAZ1 mRNA expression in the largest preovulatory and postovulatory follicle was 2.11- and 2.49-fold compared to the small white follicle, respectively (P < 0.05).ConclusionsThe goose OAZ1 structure confirms that OAZ1 plays an important role in ornithine decarboxylase-mediated regulation of polyamine homeostasis. Our findings provide an evidence for a potential function of OAZ1 in follicular development, ovulation and regression.  相似文献   

11.
BackgroundFatty acid synthase (FAS) is a key enzyme of de novo lipogenesis (DNL), which has been cloned from several species: Gallus gallus, Mus musculus, Homo sapiens, but not from Anas platyrhynchos. The current study was conducted to obtain the full-length coding sequence of Peking duck FAS and investigate its expression during adipocyte differentiation.ResultsWe have isolated a 7654 bp fragment from Peking duck adipocytes that corresponds to the FAS gene. The cloned fragment contains an open reading frame of 7545 bp, encodes a 2515 amino acid protein, and displays high nucleotide and amino acid homology to avian FAS orthologs. Twelve hour treatment of oleic acid significantly up-regulated the expression of FAS in duck preadipocytes (P < 0.05). However, 1000 μM treatment of oleic acid exhibited lipotoxic effect on cell viability (P < 0.05). In addition, during the first 24 h of duck adipocyte differentiation FAS was induced; however, after 24 h its expression level declined (P < 0.05).ConclusionWe have successfully cloned and characterized Peking duck FAS. FAS was induced during adipocyte differentiation and by oleic acid treatment. These findings suggest that Peking duck FAS plays a similar role to mammalian FAS during adipocyte differentiation.  相似文献   

12.
13.
14.
15.
BackgroundGnetum parvifolium stems and roots have been used for a long time in traditional Chinese medicines. Stilbenes are bioactive compounds present in G. parvifolium plants, and they possess antioxidative and anticancer properties. However, little is known about the responses of G. parvifolium stilbene biosynthetic pathways to stress conditions. Therefore, we investigated stilbene biosynthesis, including the expression of relevant genes, in G. parvifolium exposed to high-temperature and ultraviolet-C treatments.ResultsHigh temperatures did not influence the accumulation of total stilbenes in stems but decreased stilbene concentrations in roots at 3 h, with a subsequent restoration to control levels. In contrast, ultraviolet irradiation induced the accumulation of total stilbenes in stems but not in roots. We also observed that high temperatures inhibited the production of resveratrol and piceatannol in G. parvifolium stems and roots, whereas ultraviolet treatments initially inhibited their accumulation (up to 6 h) but induced their production at later time points. Analyses of specific genes (i.e., PAL, C4H, 4CL, STS, and CYP) revealed that their expression levels generally increased in stress-treated stems and roots, although there was some variability in the expression profiles during treatments.ConclusionsOur results indicated that high temperatures and ultraviolet irradiation differentially affect the biosynthesis of specific stilbenes in G. parvifolium stems and roots. Therefore, cultivating G. parvifolium seedlings under optimal stress conditions may increase the biosynthesis of specific stilbene compounds.  相似文献   

16.
BackgroundLaccases are copper-containing enzymes which have been used as green biocatalysts for many industrial processes. Although bacterial laccases have high stabilities which facilitate their application under harsh conditions, their activities and production yields are usually very low. In this work, we attempt to use a combinatorial strategy, including site-directed mutagenesis, codon and cultivation optimization, for improving the productivity of a thermo-alkali stable bacterial laccase in Pichia pastoris.ResultsA D500G mutant of Bacillus licheniformis LS04 laccase, which was constructed by site-directed mutagenesis, demonstrated 2.1-fold higher activity when expressed in P. pastoris. The D500G variant retained similar catalytic characteristics to the wild-type laccase, and could efficiently decolorize synthetic dyes at alkaline conditions. Various cultivation factors such as medium components, pH and temperature were investigated for their effects on laccase expression. After cultivation optimization, a laccase activity of 347 ± 7 U/L was finally achieved for D500G after 3 d of induction, which was about 9.3 times higher than that of wild-type enzyme. The protein yield under the optimized conditions was about 59 mg/L for D500G.ConclusionsThe productivity of the thermo-alkali stable laccase from B. licheniformis expressed in P. pastoris was significantly improved through the combination of site-directed mutagenesis and optimization of the cultivation process. The mutant enzyme retains good stability under high temperature and alkaline conditions, and is a good candidate for industrial application in dye decolorization.  相似文献   

17.
18.
BackgroundAPETALA3 (AP3) has significant roles in petal and stamen development in accordance with the classical ABC model.ResultsThe AP3 homolog, CDM19, from Chrysanthemum morifolium cv. Jinba was cloned and sequenced. Sequence and phylogenetic analyses revealed that CDM19 is of DEF/AP3 lineage possessing the characteristic MIKC-type II structure. Expression analysis showed that CDM19 was transcribed in petals and stamens of ray and disc florets with weak expression in the carpels. Ectopic expression of CDM19 in Arabidopsis wild-type background altered carpel development resulting in multi-carpel siliques. CDM19 could only partially rescue the Arabidopsis ap3–3 mutant.ConclusionsOur results suggest that CDM19 may partially be involved in petal and stamen development in addition to having novel function in carpel development.How to cite: Githeng’u SK, Ding L, Zhao K, et al. Ectopic expression of Chrysanthemum CDM19 in Arabidopsis reveals a novel function in carpel development. Electron J Biotechnol 2020;45. https://doi.org/10.1016/j.ejbt.2020.03.001.  相似文献   

19.
20.
BackgroundLycium barbarum (also called wolfberry), a famous Chinese traditional medicine and food ingredient, is well recognized for its significant role in preventing obesity; however, the molecular mechanisms underlying its preventive effects on fat accumulation are not well understood yet. The aim of this study was to determine the effects and mechanism of Lycium barbarum polysaccharides (LBP) on the proliferation and differentiation of 3T3-L1 preadipocytes. MTT was used to detect the proliferation of 3T3-Ll preadipocytes. Oil red O staining and colorimetric analysis were used to detect cytosolic lipid accumulation during 3T3-L1 preadipocyte differentiation. Real-time fluorescent quantitative PCR (qPCR) technology was used to detect peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), adipocyte fatty-acid-binding protein (aP2), fatty acid synthase (FAS), and lipoprotein lipase (LPL) expression.ResultsThe concentration of LBP from 25 to 200 μg/mL showed a tendency to inhibit the growth of preadipocytes at 24 h, and it inhibited the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner. In the preadipocytes treated with 200 μg/mL LBP, there were reduced lipid droplets in the cytoplasm, and its effect was opposite to that of rosiglitazone (ROS), which significantly reduced the PPARγ, C/EBPα, aP2, FAS, and LPL mRNA expression of adipocytes.ConclusionsLBP exerts inhibitive effects on the proliferation and differentiation of 3T3-L1 preadipocytes and decreases the cytoplasm accumulation of lipid droplets during induced differentiation of preadipocytes toward mature cells. Above phenomenon might link to lowered expression of PPARγ, C/EBPα, aP2, FAS, and LPL after LBP treatment. Thus, LBP could serve as a potential plant extract to treat human obesity or improve farm animal carcass quality via adjusting lipid metabolism.How to cite: Xu X, Chen W, Yu S, et al. Inhibition of preadipocyte differentiation by Lycium barbarum polysaccharide treatment in 3T3-L1 cultures. Electron J Biotechnol 2021;50. https://doi.org/10.1016/j.ejbt.2021.01.003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号