首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundLaccases are copper-containing enzymes which have been used as green biocatalysts for many industrial processes. Although bacterial laccases have high stabilities which facilitate their application under harsh conditions, their activities and production yields are usually very low. In this work, we attempt to use a combinatorial strategy, including site-directed mutagenesis, codon and cultivation optimization, for improving the productivity of a thermo-alkali stable bacterial laccase in Pichia pastoris.ResultsA D500G mutant of Bacillus licheniformis LS04 laccase, which was constructed by site-directed mutagenesis, demonstrated 2.1-fold higher activity when expressed in P. pastoris. The D500G variant retained similar catalytic characteristics to the wild-type laccase, and could efficiently decolorize synthetic dyes at alkaline conditions. Various cultivation factors such as medium components, pH and temperature were investigated for their effects on laccase expression. After cultivation optimization, a laccase activity of 347 ± 7 U/L was finally achieved for D500G after 3 d of induction, which was about 9.3 times higher than that of wild-type enzyme. The protein yield under the optimized conditions was about 59 mg/L for D500G.ConclusionsThe productivity of the thermo-alkali stable laccase from B. licheniformis expressed in P. pastoris was significantly improved through the combination of site-directed mutagenesis and optimization of the cultivation process. The mutant enzyme retains good stability under high temperature and alkaline conditions, and is a good candidate for industrial application in dye decolorization.  相似文献   

2.
BackgroundMucor indicus is a dimorphic fungus used in the production of ethanol, oil, protein, and glucosamine. It can ferment different pentoses and hexoses; however, the yields of products highly depend on the nutrients and cultivation conditions. In this study, the effects of different morphologic forms, cultivation time and temperature, presence or absence of oxygen, carbon sources, and concentration of nitrogen source on the products of M. indicus were investigated.ResultsThe fungus with all morphologies produced high yields of ethanol, in the range of 0.32–0.43 g/g, on glucose. However, the fungus with filamentous morphology produced higher amounts of oil, protein, phosphate, and glucosamine together with ethanol, compared with other morphologies. A higher amount of oil (0.145 g/g biomass) was produced at 28°C, while the best temperature for protein and glucosamine production was 32 and 37°C, respectively. Although ethanol was produced at a higher yield (0.44 g/g) under anaerobic conditions compared with aerobic conditions (yield of 0.41 g/g), aerobic cultivation resulted in higher yields of protein (0.51 g/g biomass), glucosamine (0.16 g/g alkali insoluble material, AIM), and phosphate (0.11 g/g AIM).ConclusionsIt is not possible to have the maximum amounts of the products simultaneously. The fermentation conditions and composition of culture media determine the product yields. Carbon source type and the addition of nitrogen source are among the most influencing factors on the product yields. Moreover, all measured products were made with higher yields in cultivation on glucose, except glucosamine, which was produced with higher yields on xylose.  相似文献   

3.
BackgroundRhodotorula glutinis is capable of synthesizing numerous valuable metabolites with extensive potential industrial usage. This paper reports the effect of initial culture medium pH on growth and protein, lipid, and carotenoid biosynthesis by R. glutinis.ResultsThe highest biomass yield was obtained in media with pH 4.0–7.0, and the value after 72 h was 17.2–19.4 gd.w./L. An initial pH of the medium in the range of 4.0–7.0 has no significant effect on the protein (38.5–41.3 g/100 gd.w.), lipid (10.2–12.7 g/100 gd.w.), or carotenoid (191.7–202.9 μg/gd.w.) content in the biomass or on the profile of synthesized fatty acids and carotenoids. The whole pool of fatty acids was dominated by oleic (48.1–53.4%), linoleic (21.4–25.1%), and palmitic acids (13.0–15.8%). In these conditions, the yeast mainly synthesized torulene (43.5–47.7%) and β-carotene (34.7–38.6%), whereas the contribution of torularhodin was only 12.1–16.8%. Cultivation in medium with initial pH 3.0 resulted in a reduction in growth (13.0 gd.w./L) and total carotenoid (115.8 μg/gd.w.), linoleic acid (11.5%), and torularhodin (4.5%) biosynthesis.ConclusionThe different values of initial pH of the culture medium with glycerol and deproteinized potato wastewater had a significant effect on the growth and protein, lipid, and carotenoid biosynthesis by R. glutinis.  相似文献   

4.
BackgroundXylanase from bacteria finds use in prebleaching process and bioconversion of lignocelluloses into feedstocks. The xylanolytic enzyme brings about the hydrolysis of complex biomolecules into simple monomer units. This study aims to optimize the cellulase-free xylanase production and cell biomass of Bacillus tequilensis strain ARMATI using response surface methodology (RSM).ResultsStatistical screening of medium constituents and the physical factors affecting xylanase and biomass yield of the isolate were optimized by RSM using central composite design at N = 30, namely 30 experimental runs with 4 independent variables. The central composite design showed 3.7 fold and 1.5 fold increased xylanase production and biomass yield of the isolate respectively compared to ‘one factor at a time approach’, in the presence of the basal medium containing birchwood xylan (1.5% w/v) and yeast extract (1% w/v), incubated at 40°C for 24 h. Analysis of variance (ANOVA) revealed high coefficient of determination (R2) of 0.9978 and 0.9906 for the respective responses at significant level (p < 0.05). The crude xylanase obtained from the isolate showed stability at high temperature (60°C) and alkaline condition (pH 9) up to 4 h of incubation.ConclusionsThe cellulase-free xylanase showed an alkali-tolerant and thermo-stable property with potentially applicable nature at industrial scale. This statistical approach established a major contribution in enzyme production from the isolate by optimizing independent factors and represents a first reference on the enhanced production of thermo-alkali stable cellulase-free xylanase from B. tequilensis.  相似文献   

5.
BackgroundThe paper reports on the utilization of palm kernel oil (PKO) as a low cost renewable substrate for medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA) production by Pseudomonas putida BET001. Investigation on the effects of selected key variables on growth, mixed free fatty acids consumption and mcl-PHA production by the bacterial culture in the shaken flask system were carried out along with its kinetic modeling.ResultsThe biomass production, fatty acids consumption and mcl-PHA production were found favorable when the strain was cultured in mineral medium at pH 6–7, 28°C, aeration surface-to-volume ratio of 0.4 × 106 m- 1, 250 rpm agitation rate for 48 h. Mcl-PHA production by this strain showed mixed growth and non-growth associated components as described by Luedeking–Piret kinetic model.ConclusionThe findings of this study provided add to the literature on key variables in for achieving good microbial growth and mcl-PHA production in shake flasks culture. In addition, suitable kinetic model to describe cultivation in this system was also presented.  相似文献   

6.
BackgroundThree oligosaccharides (EOS, WOS and SOS) were respectively prepared from the corresponding polysaccharides, namely exopolysaccharide (EPS), water-extracted mycelial polysaccharide (WPS) and sodium hydroxide-extracted mycelial polysaccharides (SPS) from the endophytic fungus Fusarium oxysporum Dzf17. In this study, the effects of EOS, WOS and SOS on the activities of the defense-related enzymes, namely phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO) and peroxidase (POD) in its host plant Dioscorea zingiberensis cultures were investigated.ResultsFor the suspension cell cultures of D. zingiberensis, the highest PAL activity was induced by 0.5 mg/mL of WOS at 48 h after treatment, which was 4.55-fold as that of control. Both PPO and POD activities were increased to the maximum values by 0.25 mg/mL of WOS at 48 h after treatment, which were respectively 3.74 and 3.45-fold as those of control. For the seedling cultures, the highest PAL activity was elicited by 2.5 mg/mL of EOS at 48 h after treatment, which was 3.62-fold as that of control. Both PPO and POD reached their maximum values treated with 2.5 mg/mL of WOS at 48 h after treatment, which were 4.61 and 4.19-fold as those of control, separately.ConclusionsBoth EOS and WOS significantly increased the activities of PAL, PPO and POD in the suspension cell and seedling cultures of D. zingiberensis. The results suggested that the oligosaccharides from the endophytic fungus F. oxysporum Dzf17 may be related to the activation and enhancement of the defensive mechanisms of D. zingiberensis suspension cell and seedling cultures.  相似文献   

7.
BackgroundEndophytic bacteria are ubiquitous in all plant species contributing in host plant's nutrient uptake and helping the host to improve its growth. Moringa peregrina which is a medicinal plant, growing in arid region of Arabia, was assessed for the presence of endophytic bacterial strains.ResultsPCR amplification and sequencing of 16S rRNA of bacterial endophytes revealed the 5 endophytic bacteria, in which 2 strains were from Sphingomonas sp.; 2 strains from Bacillus sp. and 1 from Methylobacterium genus. Among the endophytic bacterial strains, a strain of Bacillus subtilis LK14 has shown significant prospects in phosphate solubilization (clearing zone of 56.71 mm after 5 d), ACC deaminase (448.3 ± 2.91 nM α-ketobutyrate mg- 1 h- 1) and acid phosphatase activity (8.4 ± 1.2 nM mg- 1 min- 1). The endophytic bacteria were also assessed for their potential to produce indole-3-acetic acid (IAA). Among isolated strains, the initial spectrophotometry analysis showed significantly higher IAA production by Bacillus subtilis LK14. The diurnal production of IAA was quantified using multiple reactions monitoring method in UPLC/MS–MS. The analysis showed that LK14 produced the highest (8.7 μM) IAA on 14th d of growth. Looking at LK14 potentials, it was applied to Solanum lycopersicum, where it significantly increased the shoot and root biomass and chlorophyll (a and b) contents as compared to control plants.ConclusionThe study concludes that using endophytic bacterial strains can be bio-prospective for plant growth promotion, which might be an ideal strategy for improving growth of crops in marginal lands.  相似文献   

8.
BackgroundBiohydrogen effluent contains a high concentration of volatile fatty acid (VFA) mainly as butyric, acetic, lactic and propionic acids. The presence of various VFAs (mixture VFAs) and their cooperative effects on two-stage biohythane production need to be further studied. The effect of VFA concentrations in biohydrogen effluent of palm oil mill effluent (POME) on methane yield in methane stage of biohythane production was investigated.ResultsThe methane yield obtained in low VFA loading (0.9 and 1.8 g/L) was 15–20% times greater than that of high VFA loading (3.6 and 4.7 g/L). Butyric acid at high concentrations (8 g/L) has the individual significantly negative effect the methane production process (P < 0.05). Lactic, acetic and butyric acid mixed with propionic acid at a concentration higher than 0.5 g/L has an interaction significantly negative effect on the methanogenesis process (P < 0.05). Inhibition condition had a negative effect on both bacteria and archaea with inhibited on Geobacillus sp., Thermoanaerobacterium thermosaccharolyticum, Methanoculleus thermophilus and Methanothermobacter delfuvii resulting in low methane yield.ConclusionPreventing the high concentration of butyric acid, and propionic acid in the hydrogenic effluent could enhance methane production in two-stage anaerobic digestion for biohythane production.  相似文献   

9.
BackgroundCatalase (CAT) is an important enzyme that degrades H2O2 into H2O and O2. To obtain an efficient catalase, in this study, a new strain of high catalase-producing Serratia marcescens, named FZSF01, was screened and its catalase was purified and characterized.ResultsAfter optimization of fermentation conditions, the yield of catalase produced by this strain was as high as 51,468 U/ml. This catalase was further purified using two steps: DEAE-fast flow and Sephedex-G150. The purified catalase showed a specific activity of 197,575 U/mg with a molecular mass of 58 kDa. This catalase exhibited high activity at 20–70°C and pH 5.0–11.0. Km of the catalase was approximately 68 mM, and Vmax was 1886.8 mol/min mg. This catalase was further identified by LC–MS/MS, and the encoding gene was cloned and expressed in Escherichia coli BL21 (DE3) with a production of 17,267 ± 2037 U/ml.ConclusionsTo our knowledge, these results represent one of the highest fermentation levels reported among current catalase-producing strains. This FZSF01 catalase may be suitable for several industrial applications that comprise exposure to alkaline conditions and under a wide range of temperatures.  相似文献   

10.
BackgroundChlorophytum borivilianum is a rare medicinal plant originally distributed throughout the forest of India. The tubers of C. borivilianum are used as an aphrodisiac and impotence supplement. The propagation of C. borivilianum is possible through seeds and tubers, but conventional methods may take several months. Hence in vitro technique of shoot regeneration could be an efficient alternative means of propagating the species. Latest study reported microtuberization of C. borivilianum but there is no sufficient study on a rapid method for shoot multiplication and elongation.ResultsYoung shoot buds of C. borivilianum were cultured on MS medium containing 6-benzylaminopurine (BAP) and Kinetin (Kn), both at 0, 8.88, 17.8 and 26.6 μM, either individually or in combinations. Proliferated shoots were subcultured on fresh medium of the same constituents on week 3 of culture for further shoot multiplication and elongation. BAP alone (8.88–26.6 μM) was significantly effective on shoot multiplication, while Kn alone (8.88–26.6 μM) was significantly effective on shoot elongation compared to the control containing MS basal medium without any plant growth regulator. However, combination of both cytokinins stimulated an interaction producing higher shoot number and shoot length compared to their individual application.ConclusionsThe most suitable combination was 8.88 μM BAP + 8.88 μM Kn, reaching a mean shoot number of 10.83 and shoot length of 6.85 cm.  相似文献   

11.
BackgroundSulphur-oxidizing microorganisms are widely used in the biofiltration of total reduced sulphur compounds (odorous and neurotoxic) produced by industries such as the cellulose and petrochemical industries, which include high-temperature process steps. Some hyperthermophilic microorganisms have the capability to oxidize these compounds at high temperatures (> 60°C), and archaea of this group, for example, Sulfolobus metallicus, are commonly used in biofiltration technology.ResultsIn this study, a hyperthermophilic sulphur-oxidizing strain of archaea was isolated from a hot spring (Chillán, Chile) and designated as M1. It was identified as archaea of the genus Sulfolobus (99% homology with S. solfataricus 16S rDNA). Biofilms of this culture grown on polyethylene rings showed an elemental sulphur oxidation rate of 95.15 ± 15.39 mg S l-1 d-1, higher than the rate exhibited by the biofilm of the sulphur-oxidizing archaea S. metallicus (56.8 ± 10.91 mg l-1 d-1).ConclusionsThe results suggest that the culture M1 is useful for the biofiltration of total reduced sulphur gases at high temperatures and for other biotechnological applications.  相似文献   

12.
Background1,3-Propanodiol (1,3-PD), is used in the production of polytrimethylene terephthalate (PTT), an aromatic polyester that exhibits high elastic recoveries. It is also employed as a supplement with low solidification properties, a solvent and a lubricant in the formof propylene glycol. 1,3-PD is effectively synthesized by a microbiological way from crude glycerol. The main problem of this technology is using a high concentration of glycerol, which is a limiting factor for bacteria cells growth (especially in batch fermentation).ResultsIn this work, the influence of different glycerol concentration in batch fermentation on Clostridium butyricum DSP1 metabolism was investigated. The biomass was concentrated for two times with the use of membrane module (in case of increasing kinetic parameters). Increased optical density of bacteria cells six times increased the productivity of 1,3-PD in cultivation with 20 g/L of glycerol at the beginning of the process, and more than two times in cultivation with 60–80 g/L. Also the possibility of complete attenuation of 140 g/L of crude glycerol in the batch fermentation was investigated. During the cultivation, changes of protein profiles were analyzed. The most significant changes were observed in the cultivation in the medium supplemented with 80 g/L of glycerol. They related mainly to the DNA protein reconstructive systems, protective proteins (HSP), and also the enzymatic catalysts connected with glycerol metabolic pathway.ConclusionsThe application of filtration module in batch fermentation of crude glycerol by C. butyricum DSP1 significantly increased the productivity of the process.  相似文献   

13.
BackgroundBiomineralization is a significant process performed by living organisms in which minerals are produced through the hardening of biological tissues. Herein, we focus on calcium carbonate precipitation, as part of biomineralization, to be used in applications for environmental protection, material technology, and other fields. A strain GM-1, Microbacterium sp. GM-1, isolated from active sludge, was investigated for its ability to produce urease and induce calcium carbonate precipitation in a metabolic process.ResultsIt was discovered that Microbacterium sp. GM-1 resisted high concentrations of urea up to 60 g/L. In order to optimize the calcification process of Microbacterium sp. GM-1, the concentrations of Ni2 + and urea, pH value, and culture time were analyzed through orthogonal tests. The favored calcite precipitation culture conditions were as follows: the concentration of Ni2 + and urea were 50 μM and 60 g/L, respectively, pH of 10, and culture time of 96 h. Using X-ray diffraction analysis, the calcium carbonate polymorphs produced by Microbacterium sp. GM-1 were proven to be mainly calcite.ConclusionsThe results of this research provide evidence that Microbacterium sp. GM-1 can biologically induce calcification and suggest that strain GM-1 may play a potential role in the synthesis of new biominerals and in bioremediation or biorecovery.  相似文献   

14.
BackgroundIn the industrial biotechnology, ligninolytic enzymes are produced by single fungal strains. Experimental evidence suggests that co-culture of ligninolytic fungi and filamentous microfungi results in an increase laccase activity. In this topic, only the ascomycete Trichoderma spp. has been studied broadly. However, fungal ligninolytic-filamentous microfungi biodiversity interaction in nature is abundant and poorly studied. The enhancement of laccase and manganese peroxidase (MnP) activities of Trametes maxima as a function of time inoculation of Paecilomyces carneus and under several culture conditions using Plackett–Burman experimental design (PBED) were investigated.ResultsThe highest increases of laccase (12,382.5 U/mg protein) and MnP (564.1 U/mg protein) activities were seen in co-cultures I3 and I5, respectively, both at 10 d after inoculation. This level of activity was significantly different from the enzyme activity in non-inoculated T. maxima (4881.0 U/mg protein and 291.8 U/mg protein for laccase and MnP, respectively). PBED results showed that laccase was increased (P < 0.05) by high levels of glucose, (NH4)2SO4 and MnSO4 and low levels of KH2PO4, FeSO4 and inoculum (P < 0.05). In addition, MnP activity was increased (P < 0.05) by high yeast extract, MgSO4, CaCl2 and MnSO4 concentrations.ConclusionsInteraction between indigenous fungi: T. maximaP. carneus improves laccase and MnP activities. The inoculation time of P. carneus on T. maxima plays an important role in the laccase and MnP enhancement. The nutritional requirements for enzyme improvement in a co-culture system are different from those required for a monoculture system.  相似文献   

15.
BackgroundFermentation process development has been very important for efficient ethanol production. Improvement of ethanol production efficiency from sweet sorghum juice (SSJ) under normal gravity (NG, 160 g/L of sugar), high gravity (HG, 200 and 240 g/L of sugar) and very high gravity (VHG, 280 and 320 g/L of sugar) conditions by nutrient supplementation and alternative feeding regimes (batch and fed-batch systems) was investigated using a highly ethanol-tolerant strain, Saccharomyces cerevisiae NP01.ResultsIn the batch fermentations without yeast extract, HG fermentation at 200 g/L of sugar showed the highest ethanol concentration (PE, 90.0 g/L) and ethanol productivity (QE, 1.25 g/L·h). With yeast extract supplementation (9 g/L), the ethanol production efficiency increased at all sugar concentrations. The highest PE (112.5 g/L) and QE (1.56 g/L·h) were observed with the VHG fermentation at 280 g/L of sugar. In the fed-batch fermentations, two feeding regimes, i.e., stepwise and continuous feedings, were studied at sugar concentrations of 280 g/L. Continuous feeding gave better results with the highest PE and QE of 112.9 g/L and 2.35 g/L·h, respectively, at a feeding time of 9 h and feeding rate of 40 g sugar/h.ConclusionsIn the batch fermentation, nitrogen supplementation resulted in 4 to 32 g/L increases in ethanol production, depending on the initial sugar level in the SSJ. Under the VHG condition, with sufficient nitrogen, the fed-batch fermentation with continuous feeding resulted in a similar PE and increased QP by 51% compared to those in the batch fermentation.  相似文献   

16.
BackgroundThe production of biofuels from renewable energy sources is one of the most important issues in industrial biotechnology today. The process is known to generate various by-products, for example crude glycerol, which is obtained in the making of biodiesel from rapeseed oil. Crude glycerol may be utilized in many ways, including microbial conversion to 1,3-propanediol (1,3-PD), a raw material for the synthesis of polyesters and polyurethanes.ResultsThe paper presents results of a study on the synthesis of 1,3-propanediol from crude glycerol by a repeated batch method with the use of Clostridium butyricum DSP1. Three cycles of fermentation medium replacement were carried out. The final concentration of 1,3-PD was 62 g/L and the maximum productivity, obtained during the second cycle, reached 1.68 g/L/h. Additionally, experiments conducted in parallel to the above involved using the entire quantity of the culture broth removed from the bioreactor to inoculate successive portions of fermentation media containing crude glycerol at concentrations of 80 g/L and 100 g/L. Under those conditions, the maximum 1,3-PD concentrations were 43.2 g/L and 54.2 g/L.ConclusionsThe experiments proved that by using a portion of metabolically active biomass as inoculum for another fermentation formula it is possible to eliminate the stage of inoculum growth and thereby reduce the length of the whole operation. Additionally, that strategy avoids the phase of microbial adaptation to a different source of carbon such as crude glycerol, which is more difficult to utilize, thus improving the kinetic parameters of 1,3-PD production.  相似文献   

17.
BackgroundFatty acid synthase (FAS) is a key enzyme of de novo lipogenesis (DNL), which has been cloned from several species: Gallus gallus, Mus musculus, Homo sapiens, but not from Anas platyrhynchos. The current study was conducted to obtain the full-length coding sequence of Peking duck FAS and investigate its expression during adipocyte differentiation.ResultsWe have isolated a 7654 bp fragment from Peking duck adipocytes that corresponds to the FAS gene. The cloned fragment contains an open reading frame of 7545 bp, encodes a 2515 amino acid protein, and displays high nucleotide and amino acid homology to avian FAS orthologs. Twelve hour treatment of oleic acid significantly up-regulated the expression of FAS in duck preadipocytes (P < 0.05). However, 1000 μM treatment of oleic acid exhibited lipotoxic effect on cell viability (P < 0.05). In addition, during the first 24 h of duck adipocyte differentiation FAS was induced; however, after 24 h its expression level declined (P < 0.05).ConclusionWe have successfully cloned and characterized Peking duck FAS. FAS was induced during adipocyte differentiation and by oleic acid treatment. These findings suggest that Peking duck FAS plays a similar role to mammalian FAS during adipocyte differentiation.  相似文献   

18.
BackgroundPoly(dl-lactic acid), or PDLLA, is a biodegradable polymer that can be hydrolyzed by various types of enzymes. The protease produced by Actinomadura keratinilytica strain T16-1 was previously reported to have PDLLA depolymerase activity. However, few studies have reported on PDLLA-degrading enzyme production by bacteria. Therefore, the aims of this study were to determine a suitable immobilization material for PDLLA-degrading enzyme production and optimize PDLLA-degrading enzyme production by using immobilized A. keratinilytica strain T16-1 under various fermentation process conditions in a stirrer fermenter.ResultsAmong the tested immobilization materials, a scrub pad was the best immobilizer, giving an enzyme activity of 30.03 U/mL in a shake-flask scale. The maximum enzyme activity was obtained at aeration 0.25 vvm, agitation 170 rpm, 45°C, and 48 h of cultivation time. Under these conditions, a PDLLA-degrading enzyme production of 766.33 U/mL with 15.97 U/mL·h productivity was observed using batch fermentation in a 5-L stirrer fermenter. Increased enzyme activity and productivity were observed in repeated-batch (942.67 U/mL and 19.64 U/mL·h) and continuous fermentation (796.43 U/mL and 16.58 U/mL·h) at a dilution rate of 0.013/h. Scaled-up production of the enzyme in a 10-L stirrer bioreactor using the optimized conditions showed a maximum enzyme activity of 578.67 U/mL and a productivity of 12.06 U/mL·h.ConclusionsThis research successfully scaled-up the enzyme production to 5 and 10 L in a stirrer fermenter and is helpful for many applications of poly(lactic acid).  相似文献   

19.
BackgroundThe effect of diverse oxygen transfer coefficient on the l-erythrulose production from meso-erythritol by a newly isolated strain, Gluconobacter kondonii CGMCC8391 was investigated. In order to elucidate the effects of volumetric mass transfer coefficient (kLa) on the fermentations, baffled and unbaffled flask cultures, and fed-batch cultures were developed in present work.ResultsWith the increase of the kLa value in the fed-batch culture, l-erythrulose concentration, productivity and yield were significantly improved, while cell growth was not the best in the high kLa. Thus, a two-stage oxygen supply control strategy was proposed, aimed at achieving high concentration and high productivity of l-erythrulose. During the first 12 h, kLa was controlled at 40.28 h-1 to obtain high value for cell growth, subsequently kLa was controlled at 86.31 h-1 to allow for high l-erythrulose accumulation.ConclusionsUnder optimal conditions, the l-erythrulose concentration, productivity, yield and DCW reached 207.9 ± 7.78 g/L, 6.50 g/L/h, 0.94 g/g, 2.68 ± 0.17 g/L, respectively. At the end of fermentation, the l-erythrulose concentration and productivity were higher than those in the previous similar reports.  相似文献   

20.
BackgroundEndoglucanase, one of three type cellulases, can randomly cleave internal β-1,4-linkages in cellulose polymers. Thus, it could be applied in agricultural and industrial processes.ResultsA novel endoglucanase gene (JqCel5A) was cloned from Jonesia quinghaiensis and functionally expressed in Escherichia coli Rosetta (DE3). It contained 1722 bp and encoded a 573-residue polypeptide consisting of a catalytic domain of glycoside hydrolase family 5 (GH5) and a type 2 carbohydrate-binding module (CBM2), together with a predicted molecular mass of 61.79 kD. The purified JqCel5A displayed maximum activity at 55°C and pH 7.0, with 21.7 U/mg, 26.19 U/mg and 4.81 U/mg towards the substrate carboxymethyl cellulose, barley glucan and filter paper, respectively. Interestingly, JqCel5A exhibited high pH stability over a broad pH range of pH (3–11), and had good tolerance to a wide variety of deleterious chemicals including heavy metals and detergent. The catalytic mechanism of JqCel5A was also investigated by site mutagenesis and homology-modeling in this study.ConclusionsIt was believed that these properties might make JqCel5A to be potentially used in the suitable industrial catalytic condition, which has a broad pH fluctuation and/or chemical disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号