首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Twelve participants ran (9 km · h(-1)) to test two types of running shoes: replica and original shoes. Ground reaction force, plantar pressure and electromyographic activity were recorded. The shoes were tested randomly and on different days. Comparisons between the two experimental conditions were made by analysis of variance (ANOVA) test (P ≤ 0.05). The time to first peak, loading rate of the first peak and impulse of the first 75 ms of stance were significantly different between the shoes (P ≤ 0.05), revealing an increase of impact forces for the replica shoes. The peak plantar pressure values were significantly higher (P ≤ 0.05) when wearing replica shoes. During running, the contact area was significantly smaller (P ≤ 0.05) for the replica shoe. The electromyographic activity of the analysed muscles did not show changes between the two shoes in running. These findings suggest that the use of replica running shoes can increase the external load applied to the human body, but may not change the muscle activity pattern during locomotion. This new mechanical situation may increase the risk of injuries in these movements.  相似文献   

2.
Abstract

Controversy exists whether custom-made insoles are more effective in reducing plantar loading compared to prefabricated insoles. Forty recreational athletes ran using custom-made, prefabricated, and the original insoles of their running shoes, at rest and after a fatigue run. Contact time, stride rate, and plantar loading parameters were measured. Neither the insole conditions nor the fatigue state modified contact time and stride rate. Addressing prevention of running injuries, post-fatigue loading values are of great interest. Custom-made insoles reduced the post-fatigue loading under the hallux (92 vs. 130 kPa, P < 0.05), medial midfoot (70 vs. 105 kPa, P < 0.01), and lateral midfoot (62 vs 96 kPa, P < 0.01). Prefabricated insoles provoked reductions in post-fatigue loading under the toes (120 vs. 175 kPa, P < 0.05), medial midfoot (71 vs. 105 kPa, P < 0.01), and lateral midfoot (68 vs. 96 kPa, P < 0.01). Regarding both study insoles, custom-made insoles reduced by 31% and 54% plantar loading under the medial and lateral heel compared to the prefabricated insoles. Finally, fatigue state did not influence plantar loading regardless the insole condition. In long-distance races, even a slight reduction in plantar loading at each foot strike may suppose a significant decrease in the overall stress experienced by the foot, and therefore the use of insoles may be an important protective mechanism for plantar overloading.  相似文献   

3.
An evaluation of a six-week Combined minimal footwear transition and gait-retraining combination vs. gait retraining only on impact characteristics and leg stiffness. Twenty-four trained male runners were randomly assigned to either (1) Minimalist footwear transition Combined with gait-retraining over a six-week period (“Combined” group; n = 12) examined in both footwear, or (2) a gait-retraining group only with no minimalist footwear exposure (“Control”; n = 12). Participants were assessed for loading rate, impact peak, vertical, knee and ankle stiffness, and foot-strike using 3D and kinetic analysis. Loading rate was significantly higher in the Combined group in minimal shoes in pre-tests compared to a Control (P ≤ 0.001), reduced significantly in the Combined group over time (P ≤ 0.001), and was not different to the Control group in post-tests (P = 0.16). The impact peak (P = 0.056) and ankle stiffness reduced in both groups (P = 0.006). Loading rate and vertical stiffness was higher in minimalist footwear than conventional running shoes both pre (P ≤ 0.001) and post (P = 0.046) the intervention. There has a higher tendency to non-rearfoot strike in both interventions, but more acute changes in the minimalist footwear. A Combined intervention can potentially reduce impact variables. However, higher loading rate initially in minimalist footwear may increase the risk of injury in this condition.  相似文献   

4.
The purpose of this study was to determine if minimalist shoes improve time trial performance of trained distance runners and if changes in running economy, shoe mass, stride length, stride rate and footfall pattern were related to any difference in performance. Twenty-six trained runners performed three 6-min sub-maximal treadmill runs at 11, 13 and 15 km·h?1 in minimalist and conventional shoes while running economy, stride length, stride rate and footfall pattern were assessed. They then performed a 5-km time trial. In the minimalist shoe, runners completed the trial in less time (effect size 0.20 ± 0.12), were more economical during sub-maximal running (effect size 0.33 ± 0.14) and decreased stride length (effect size 0.22 ± 0.10) and increased stride rate (effect size 0.22 ± 0.11). All but one runner ran with a rearfoot footfall in the minimalist shoe. Improvements in time trial performance were associated with improvements in running economy at 15 km·h?1 (r = 0.58), with 79% of the improved economy accounted for by reduced shoe mass (P < 0.05). The results suggest that running in minimalist shoes improves running economy and 5-km running performance.  相似文献   

5.
Comfort has been shown to be the most desired football boot feature by players. Previous studies have shown discomfort to be related to increased plantar pressures for running shoes which, in some foot regions, has been suggested to be a causative factor in overuse injuries. This study examined the correlation between subjective comfort data and objective plantar pressure for football boots during football-specific drills. Eight male university football players were tested. Plantar pressure data were collected during four football-specific movements for each of three different football boots. The global and local peak pressures based on a nine-sectioned foot map were compared to subjective comfort measures recorded using a visual analogue scale for global discomfort and a discomfort foot map for local discomfort. A weak (rs = ?0.126) yet significant (P < 0.05) correlation was shown between the peak plantar pressure experienced and the visual analogue scale rated comfort. The model only significantly predicted (P > 0.001) the outcome for two (medial and lateral forefoot) of the nine foot regions. Subjective comfort data is therefore not a reliable measure of increased plantar pressures for any foot region. The use of plantar pressure measures is therefore needed to optimise injury prevention when designing studded footwear.  相似文献   

6.
There are differences in ground reaction force when wearing soccer boots compared with training shoes on a natural turf surface. Two natural-turf-covered force platforms, located outdoors in a field, allowed comparison of performance when six-studded soccer boots and soccer training shoes were worn during straight fast running (5.4 m s-1 ± 0.27 m s-1) and slow running (4.4 ms-1 ± 0.22 m s-1). Six male soccer players (mean age: 25 ± 4.18 years; mean mass 79.7 ±9.32 kg) struck the first platform with the right foot and the second platform with the left foot. In fast running, the mean vertical impact peak was significantly greater in soccer boots (2.706 BW) than in training shoes (2.496 BW) when both the right and left foot were considered together and averaged (P = 0.003). Similarly, the mean vertical impact peak loading rate was greater when wearing soccer boots at 26.09 BWs-1 compared to training shoes (21.32 BWs-1;P = 0.002). Notably, the mean vertical impact peak loading rate of the left foot (boots: 28.07 BWs-1; shoes: 22.52 BWs-1) was significantly greater than the right foot (boots: 24.11 BWs-1; shoes: 20.11 BWs-1) in both boots and shoes (P = 0.018). The braking force was greater for the left foot (P = 0.013). In contrast, mean peak vertical propulsion forces were greater for the right foot (P > 0.001) when either soccer boots or training shoes were considered. Similar significant trends were evident in slow running, and, notably, in both soccer boots and training shoes medial forces were greater for the left foot (P = 0.008) and lateral forces greater for the right foot (P = 0.011). This study showed the natural turf ground reaction force measurement system can highlight differences in footwear in an ecological environment. Greater forces and impact loading rates occurred during running activity in soccer boots than in training shoes, with soccer boots showing reduced shock attenuation at impact. Such findings may have implications for impact-related injuries with sustained exposure, especially on harder natural-turf surfaces. There were differences in the forces occurring at the right and left feet with the ground, thus suggesting the use of bipedal monitoring of ground reaction forces.  相似文献   

7.
8.
ABSTRACT

Ultra-cushioning (ULTRA) shoes are new to the running shoe market. Several studies have evaluated kinematics and kinetics while running in ULTRA shoes, however it remains unknown how such shoes influence joint coordination. Therefore, the purpose of this study was to evaluate lower extremity coordination and coordination variability when running in minimalist (MIN), traditional (NEUT) and ULTRA shoes. Fifteen runners ran for ten minutes in each shoe type. Coordination patterns and coordination variability were assessed for rearfoot-tibia, rearfoot-knee, and tibia-knee couplings using a modified vector coding method during early, mid, and late stance periods. During late stance ULTRA shoes resulted in more antiphase coordination than MIN (p =.036) or NEUT (p =.047) shoes and less in-phase coordination than MIN (p =.048) or NEUT (p =.013) shoes. During late stance there was also more proximal phase rearfoot-knee coordination in ULTRA shoes than in either MIN (p =.039) or NEUT (p =.005) shoes and less in-phase coordination in ULTRA shoes than in NEUT shoes (p =.006). There were no differences in coordination variability between shoes during any phase. The differences in coordination may have implications for tissue loading and injury development when running in ULTRA shoes..  相似文献   

9.
This study sought to compare the kinetics and kinematics data in a group of habitual shod runners when running in traditional running shoes and newly designed minimalist shoes with lug platform. This novel footwear design claims to simulate barefoot running and reduce energy loss during impact. We compared footstrike angle (FSA), vertical average (VALR) and instantaneous (VILR) loading rates, energy loss and initial vertical stiffness between two shoe conditions. Runners demonstrated a decreased FSA while running in minimalist shoes with lug platform than traditional shoes (= 0.003; Cohen’s = 0.918). However, we did not observe a landing pattern transition. VALR and VILR between two footwear conditions showed no significant difference (= 0.191–0.258; Cohen’s = 0.304–0.460). Initial vertical stiffness (= 0.032; Cohen’s = 0.671) and energy loss (= 0.044; Cohen’s = 0.578) were greater when running in minimalist shoes with lug platform. The results show that minimalist shoes with lug platform reduce the FSA but may not lead to a landing pattern switch or lower vertical loading rates. Interestingly, the new shoe design leads to a greater energy loss than traditional running shoes, which could be explained by a higher initial vertical stiffness.  相似文献   

10.
ABSTRACT

Loading rates have been linked to running injuries, revealing persistent impact features that change direction among three-dimensional axes in different footwear and footstrike patterns. Extracting peak loads from ground reaction forces, however, can neglect the time-varying loading patterns experienced by the runner in each footfall. Following footwear and footstrike manipulations during laboratory-based overground running, we examined three-dimensional loading rate-time features in each direction (X, Y, Z) using principal component analysis. Twenty participants (9 M, 11 F, age: 25.3 ± 3.6 y) were analysed during 14 running trials in each of two footwear (cushioned and minimalist) and three footstrike conditions (forefoot, midfoot, rearfoot). Two principal components (PC) captured the primary loading rate-time features (PC1: 42.5% and PC2: 22.8% explained variance) and revealed interaction among axes, footwear, and footstrike conditions (PC1: F (2.1, 40.1) = 5.6, p = 0.007, η 2 = 0.23; PC2: F (2.0, 38.4) = 62.3, p < 0.001, η 2 = 0.77). Rearfoot running in cushioned footwear attenuated impact loads in the vertical direction, and forefoot running in minimalist footwear attenuated impact loads in the anterior-posterior and medial-lateral directions relative to forefoot running in cushioned shoes. Loading patterns depend on footwear and footstrike interactions, which require shoes that match the runner’s footstrike pattern.  相似文献   

11.
Shoe manufacturers launch running shoes with increased (e.g., maximalists) or decreased (e.g., minimalists) midsole thickness and claim that they may prevent running injury. Previous studies tested footwear models with different midsole thicknesses on the market but the shoe construct was not strictly comparable. Therefore, in the present study, we examined the effect of midsole thickness, from 1-mm to 29-mm, in a standard test shoe prototype on the vertical loading rates, footstrike angle and temporal spatial parameters in distance runners. Fifteen male habitual rearfoot strikers were recruited from local running clubs. They were asked to run on an instrumented treadmill in shoes with different midsole thicknesses. We found significant interactions between midsole thickness with vertical loading rates (< 0.001), footstrike angle (= 0.013), contact time (< 0.001), cadence (= 0.003), and stride length (= 0.004). Specifically, shoes with thinner midsole (1- and 5-mm) significantly increased the vertical loading rates and shortened the contact time, when compared with thicker midsole shoes (25- and 29-mm). However, we did not observe any substantial differences in the footstrike angle, cadence and stride length between other shod conditions. The present study provides biomechanical data regarding the relationship between full spectrum midsole thicknesses and running biomechanics in a group of rearfoot strikers.  相似文献   

12.
Abstract

To develop a track version of the maximal anaerobic running test, 10 sprint runners and 12 distance runners performed the test on a treadmill and on a track. The treadmill test consisted of incremental 20-s runs with a 100-s recovery between the runs. On the track, 20-s runs were replaced by 150-m runs. To determine the blood lactate versus running velocity curve, fingertip blood samples were taken for analysis of blood lactate concentration at rest and after each run. For both the treadmill and track protocols, maximal running velocity (v max), the velocities associated with blood lactate concentrations of 10 mmol · l?1 ( v 10 mM) and 5 mmol · l?1 ( v 5 mM), and the peak blood lactate concentration were determined. The results of both protocols were compared with the seasonal best 400-m runs for the sprint runners and seasonal best 1000-m time-trials for the distance runners. Maximal running velocity was significantly higher on the track (7.57 ± 0.79 m · s?1) than on the treadmill (7.13 ± 0.75 m · s?1), and sprint runners had significantly higher v max, v 10 mM, and peak blood lactate concentration than distance runners (P<0.05). The Pearson product – moment correlation coefficients between the variables for the track and treadmill protocols were 0.96 (v max), 0.82 (v 10 mM), 0.70 (v 5 mM), and 0.78 (peak blood lactate concentration) (P<0.05). In sprint runners, the velocity of the seasonal best 400-m run correlated positively with v max in the treadmill (r = 0.90, P<0.001) and track protocols (r = 0.92, P<0.001). In distance runners, a positive correlation was observed between the velocity of the 1000-m time-trial and v max in the treadmill (r = 0.70, P<0.01) and track protocols (r = 0.63, P<0.05). It is apparent that the results from the track protocol are related to, and in agreement with, the results of the treadmill protocol. In conclusion, the track version of the maximal anaerobic running test is a valid means of measuring different determinants of sprint running performance.  相似文献   

13.
We evaluated the efficacy of an in-field gait retraining programme using mobile biofeedback to reduce cumulative and peak tibiofemoral loads during running. Thirty runners were randomised to either a retraining group or control group. Retrainers were asked to increase their step rate by 7.5% over preferred in response to real-time feedback provided by a wrist mounted running computer for 8 routine in-field runs. An inverse dynamics driven musculoskeletal model estimated total and medial tibiofemoral joint compartment contact forces. Peak and impulse per step total tibiofemoral contact forces were immediately reduced by 7.6% and 10.6%, respectively (P < 0.001). Similarly, medial tibiofemoral compartment peak and impulse per step tibiofemoral contact forces were reduced by 8.2% and 10.6%, respectively (P < 0.001). Interestingly, no changes were found in knee adduction moment measures. Post gait retraining, reductions in medial tibiofemoral compartment peak and impulse per step tibiofemoral contact force were still present (P < 0.01). At the 1-month post-retraining follow-up, these reductions remained (P < 0.05). With these per stance reductions in tibiofemoral contact forces in mind, cumulative tibiofemoral contact forces did not change due to the estimated increase in number of steps to run 1 km.  相似文献   

14.
Abstract

The aim of the study was to evaluate the short and medium term use of personalised insoles, produced by combining additive manufacturing (AM) with three-dimensional (3-D) foot scanning and computer aided design (CAD) systems. For that, 38 runners (19 pairings) were recruited. The experimental conditions were: personalised and control. The personalised condition consisted of trainers fitted with personalised glove fit insoles manufactured using AM and using foot scans to match the plantar geometry of the feet. The control condition consisted of the same trainers fitted with insoles also manufactured using AM but using scans of the original insole shape. Participants were allocated to one of the experimental conditions and wore the trainers for 3 months. Over this period they attended three laboratory sessions (at months 0, 1.5 and 3) and completed an Activity Diary after each training session. The footwear was evaluated in terms of discomfort and biomechanics. Lower discomfort ratings were found in the heel area (P ≤ 0.05) and for overall fit (P ≤ 0.05), with the personalised insole. However, discomfort was reported under the arch region for both conditions. With regard to the biomechanical data, differences between conditions were detected for ankle dorsiflexion at footstrike (P ≤ 0.05), maximum ankle eversion (P ≤ 0.05) and peak mean pressure under the heel (P ≤ 0.01): the personalised condition had lower values which may reduce injury risk. The personalisation of the geometry of insoles through advances in AM together with 3-D scanning and CAD technologies can provide benefits and has potential.  相似文献   

15.
Tendon stress may be one of the important risk factors for running-related tendon injury. Several methods have been used to estimate Achilles tendon (AT) loading during a human performance such as inverse dynamics (ID) and inverse dynamics-based static optimisation (IDSO). Our purpose was to examine differences between ID and IDSO estimates of AT loading during running. Kinematic data were captured simultaneously with kinetic data. Imaging of the AT cross-sectional area was performed with ultrasound for 17 healthy runners (height: 170.2 ± 6.2 cm, mass: 63.9 ± 11.0 kg, age: 21.8 ± 1.4 years). AT stress, strain, and force were estimated from both ID and IDSO approaches. The two methods resulted in minimal differences (3.6–4.7%) in estimated peak AT stress, strain, and force (P = 0.051–0.054); however, IDSO estimates were greater (32.7–36.8%) during early-stance phase of running (P = 0.000–0.008). This difference in AT load during early-stance may be due to the inability of the ID to account muscle coactivation. The similarity between the peak AT loading for ID and IDSO methods revealed that the advantage of IDSO used to estimate muscle forces had little effect on the ankle plantar flexor peak forces during running. Therefore, the use of IDSO with a higher computational cost compared with ID may not be necessary for estimating AT stress during running.  相似文献   

16.
Abstract

The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([Vdot]O2max), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [Vdot]O2max (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.  相似文献   

17.
聚焦跑步时髌股关节生物力学特征,探究穿着不同极简指数(MI)跑鞋对髌股关节接触力、应力等的即刻影响。选取15名习惯后跟着地的健康男性跑者,分别穿着两种MI跑鞋(MI 86%极简跑鞋和MI 26%缓冲跑鞋),使用Vicon红外运动捕捉系统、Kistler三维测力台同步采集3.33 m/s(速度变化范围±5%)跑速下的膝、踝关节运动学和地面反作用力,通过逆向动力学等计算股四头肌肌力、髌股关节接触力、髌股关节接触面积以及髌股关节接触应力。结果显示:两种跑鞋条件下的冲击力峰值和蹬地力峰值均无明显差异。与缓冲跑鞋相比,穿着极简跑鞋跑步时,膝关节最大屈曲角度显著降低(P<0.01);髌股关节接触面积显著减小(P<0.01);膝关节伸肌峰值力矩显著下降(P<0.01);髌股关节接触力和应力峰值均显著减小(P<0.05)。研究表明,相比缓冲跑鞋,穿着极简跑鞋在未影响触地后冲击力峰值的同时,通过降低伸膝力矩大幅度减少髌股关节接触力(下降17.02%)、降低髌股关节接触应力,从而有效改善支撑期髌股关节负荷,为进一步减小髌股关节疼痛综合征风险提供可能。  相似文献   

18.
This study investigated whether male runners improve running performance, running economy, ankle plantar flexor strength, and alter running biomechanics and lower limb bone mineral density when gradually transitioning to using minimalist shoes for 100% of weekly running. The study was a planned follow-up of runners (n?=?50) who transitioned to minimalist or conventional shoes for 35% of weekly structured training in a previous 6-week randomised controlled trial. In that trial, running performance and economy improved more with minimalist shoes than conventional shoes. Runners in each group were instructed to continue running in their allocated shoe during their own preferred training programme for a further 20 weeks while increasing allocated shoe use to 100% of weekly training. At the 20-week follow-up, minimalist shoes did not affect performance (effect size: 0.19; p?=?0.218), running economy (effect size: ≤?0.24; p?≥?0.388), stride rate or length (effect size: ≤?0.12; p?≥?0.550), foot strike (effect size: ≤?0.25; p?≥?0.366), or bone mineral density (effect size: ≤?0.40; p?≥?0.319). Minimalist shoes increased plantar flexor strength more than conventional shoes when runners trained with greater mean weekly training distances (shoe*distance interaction: p?=?0.036). After greater improvements with minimalist shoes during the initial six weeks of a structured training programme, increasing minimalist shoe use from 35% to 100% over 20 weeks, when runners use their own preferred training programme, did not further improve performance, running economy or alter running biomechanics and lower limb bone mineral density. Minimalist shoes improved plantar flexor strength more than conventional shoes in runners with greater weekly training distances.  相似文献   

19.
The purpose of this study was to determine whether there are differences in the perceived comfort, plantar pressure, and rearfoot motion between laced running shoes and elastic-covered running shoes. Fifteen male amateur runners participated in the study. Each participant was assigned laced running shoes and elastic-covered running shoes for use during the study. The perceived comfort, plantar loading, and rearfoot motion control of each type of shoes during running were recorded. When the laced running shoes and elastic-covered running shoes were compared, the elastic-covered running shoes were given a lower perceived comfort rating in terms of shoe length, width, heel cup fitting, and forefoot cushioning. The elastic-covered running shoes also recorded higher peak plantar pressure in the lateral side of the forefoot, as well as larger maximum rearfoot pronation. Overall, shoelaces can help runners obtain better foot-shoe fit. They increase the perceived comfort, and decrease the maximum pronation and plantar pressure. Moreover, shoelaces may help prevent injury in running by allowing better control of the aforementioned factors.  相似文献   

20.
Abstract

The aim of this study was to examine the effect of playing formation on high-intensity running and technical performance during elite soccer matches. Twenty English FA Premier League games were analysed using a multiple-camera computerized tracking system (n = 153 players). Overall ball possession did not differ (P > 0.05) between 4–4–2, 4–3–3 and 4–5–1 formations (50%, s = 7 vs. 49%, s = 8 vs. 44%, s = 6). No differences were observed in high-intensity running between 4–4–2, 4–3–3 and 4–5–1 formations. Compared with 4–4–2 and 4–3–3 formations, players in a 4–5–1 formation performed less very high-intensity running when their team was in possession (312 m, s = 196 vs. 433 m, s = 261 vs. 410 m, s = 270; P < 0.05) but more when their team was not in possession (547 m, s = 217 vs. 461 m, s = 156 vs. 459 m, s = 169; P < 0.05). Attackers in a 4–3–3 performed ~30% more (P < 0.05) high-intensity running than attackers in 4–4–2 and 4–5–1 formations. However, the fraction of successful passes was highest in a 4–4–2 (P < 0.05) compared with 4–3–3 and 4–5–1 formations. The results suggest that playing formation does not influence the overall activity profiles of players, except for attackers, but impacts on very high-intensity running activity with and without ball possession and some technical elements of performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号