首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to determine if adults spontaneously exploit the laws of physics to achieve better accuracy when throwing at various distances. Eight adults performed 25 underarm throws at five horizontal circular targets located 4, 5, 6, 7 and 8 m away with a constant 5% relative accuracy requirement. Angle and speed of the ball at release were found to increase with throwing distance, while the coordinates of the release point did not change significantly. These results support the idea that people minimize the variability in impact distance by adapting both the angle and the speed at ball release following a mechanical optimum predicted by the laws of physics. Moreover, variability in distance was found to be less than expected because of independent variations in the angle and speed at ball release. Hence, the control of precision throwing seems to imply compensatory variability, as frequently reported in the control of skilled actions.  相似文献   

2.
Learning precision ball throwing was mostly studied to explore the early rapid improvement of accuracy, with poor attention on possible adaptive processes occurring later when the rate of improvement is reduced. Here, we tried to demonstrate that the strategy to select angle, speed and height at ball release can be managed during the learning periods following the performance stabilization. To this aim, we used a multivariate linear model with angle, speed and height as predictors of changes in accuracy. Participants performed underarm throws of a tennis ball to hit a target on the floor, 3.42 m away. Two training sessions (S1, S2) and one retention test were executed. Performance accuracy increased over the S1 and stabilized during the S2, with a rate of changes along the throwing axis slower than along the orthogonal axis. However, both the axes contributed to the performance changes over the learning and consolidation time. A stable relationship between the accuracy and the release parameters was observed only during S2, with a good fraction of the performance variance explained by the combination of speed and height. All the variations were maintained during the retention test. Overall, accuracy improvements and reduction in throwing complexity at the ball release followed separate timing over the course of learning and consolidation.  相似文献   

3.
A kinematic analysis of rugby lineout throwing   总被引:1,自引:1,他引:0  
To characterize rugby union lineout throwing technique, three experienced male rugby players performed throwing trials under varying conditions of distance and trajectory. Motion analysis permitted the recovery of joint centre coordinates at 120 Hz and the construction of a three-dimensional linked segment model for calculation of joint angle and centre of mass time histories. All participants exhibited greater accuracy at shorter throwing distances, although the accuracy decrement was less in players of higher standard. Participants demonstrated different alterations in technique when performing throws of longer distances, either showing increased magnitudes of upper-body joint angle velocities (less accurate thrower) or lower-body joint velocities (more accurate thrower). The most elite thrower exhibited greater consistency in timing of peak joint angle velocities, with an overall standard deviation of 0.008 s compared with 0.027 s for the least accurate thrower. Data from participants of lesser ability suggest that changes are made to both magnitudes and timing of joint kinematics, which leads to increased variability in performance. The implications for players and coaches include the need to develop core strength to permit limited changes to the timing and magnitude of upper-body joint actions while allowing sufficient end-point velocity to be imparted on the ball.  相似文献   

4.
We investigated the release angle that maximizes the distance attained in a long soccer throw-in. One male soccer player performed maximum-effort throws using release angles of between 10 and 60 degrees, and the throws were analyzed using two-dimensional videography. The player's optimum release angle was calculated by substituting mathematical expressions for the measured relationships between release speed, release height and release angle into the equations for the flight of a spherical projectile. We found that the musculoskeletal structure of the player's body had a strong influence on the optimum release angle. When using low release angles the player released the ball with a greater release speed and, because the range of a projectile is strongly dependent on the release speed, this bias toward low release angles reduced the optimum release angle to about 30 degrees. Calculations showed that the distance of a throw may be increased by a few metres by launching the ball with a fast backspin, but the ball must be launched at a slightly lower release angle.  相似文献   

5.
Cricket     
The laws of bowling in cricket state ‘a ball is fairly delivered in respect of the arm if, once the bowler's arm has reached the level of the shoulder in the delivery swing, the elbow joint is not straightened partially or completely from that point until the ball has left the hand’. Recently two prominent bowlers, under suspicion for transgressing this law, suggested that they are not ‘throwing’ but due to an elbow deformity are forced to bowl with a bent bowling arm. This study examined whether such bowlers can produce an additional contribution to wrist/ball release speed by internal rotation of the upper arm. The kinematics of a bowling arm were calculated using a simple two‐link model (upper arm and forearm). Using reported internal rotation speeds of the upper arm from baseball and waterpolo, and bowling arm kinematics from cricket, the change in wrist speed was calculated as a function of effective arm length, and wrist distance from the internal rotation axis. A significant increase in wrist speed was noted. This suggests that bowlers who can maintain a fixed elbow flexion during delivery can produce distinctly greater wrist/ball speeds by using upper arm internal rotation.  相似文献   

6.
Cricket bowling is traditionally thought to be a rigid-arm motion, allowing no elbow straightening during the delivery phase. Conversely, research has shown that a perfectly rigid arm through delivery is practically unattainable, which has led to rule changes over the past years. The current rule requires a bowler not to increase the elbow angle by more than 15 degrees, thus requiring a measurement to confirm legality in "suspect" bowlers. The aims of this study were to evaluate whether the current rule is maintained over a range of bowlers and bowling styles, and to ascertain whether other kinematics measures may better differentiate between legal and suspect bowling actions. Eighty-three bowlers of varying pace were analysed using reflective markers and a high-speed (240 Hz) eight-camera motion analysis system in a laboratory. The change in elbow segment angle (minimum angle between the arm and forearm), the change in elbow extension angle with respect to the flexion-extension axis of a joint coordinate system, and the elbow extension angular velocity at ball release were measured. We found that bowlers generally bowled within a change in elbow extension angle of 15.5 degrees. However, this limit was unable to differentiate groups of bowlers from those who were suspected of throwing in the past. Improved differentiation was attained using the elbow extension angular velocity at ball release. The elbow extension angular velocity at ball release may be conceptually more valid than the elbow extension angle in determining which bowlers use the velocity-contributing mechanisms of a throw. Also, a high value of elbow extension angular velocity at ball release may be related to the visual impression of throwing. Therefore, it is recommended that researchers and cricket legislators examine the feasibility of specifying a limit to the elbow extension angular velocity at ball release to determine bowling legality.  相似文献   

7.
Cricket bowling is traditionally thought to be a rigid-arm motion, allowing no elbow straightening during the delivery phase. Conversely, research has shown that a perfectly rigid arm through delivery is practically unattainable, which has led to rule changes over the past years. The current rule requires a bowler not to increase the elbow angle by more than 15°, thus requiring a measurement to confirm legality in “suspect” bowlers. The aims of this study were to evaluate whether the current rule is maintained over a range of bowlers and bowling styles, and to ascertain whether other kinematics measures may better differentiate between legal and suspect bowling actions. Eighty-three bowlers of varying pace were analysed using reflective markers and a high-speed (240 Hz) eight-camera motion analysis system in a laboratory. The change in elbow segment angle (minimum angle between the arm and forearm), the change in elbow extension angle with respect to the flexion–extension axis of a joint coordinate system, and the elbow extension angular velocity at ball release were measured. We found that bowlers generally bowled within a change in elbow extension angle of 15°. However, this limit was unable to differentiate groups of bowlers from those who were suspected of throwing in the past. Improved differentiation was attained using the elbow extension angular velocity at ball release. The elbow extension angular velocity at ball release may be conceptually more valid than the elbow extension angle in determining which bowlers use the velocity-contributing mechanisms of a throw. Also, a high value of elbow extension angular velocity at ball release may be related to the visual impression of throwing. Therefore, it is recommended that researchers and cricket legislators examine the feasibility of specifying a limit to the elbow extension angular velocity at ball release to determine bowling legality.  相似文献   

8.
男子标枪运动员张连标投掷技术分析   总被引:3,自引:0,他引:3  
通过对张连标掷标枪技术的分析,从助跑距离、助跑速度的变化以及最后用力过程中身体重心速度、标枪速度和运动员身体姿势角等变量,揭示我国优秀男子标枪运动员的投掷技术水平。  相似文献   

9.
Abstract

This study examines the differences between expert and novice team-handball players in their sensitivity to instructions that emphasize speed or precision requirements. The effects of instructions on throwing speed and accuracy of a handball over arm throw and the speed–accuracy trade-off in experts and novices is revisited. An expert group (n=18) with a training experience of more than 10 years, and a novice group (n=24) without experience in team-handball, took part in the study. The participants were asked to throw to targets located at different positions following instructions emphasizing accuracy and instructions emphasizing accuracy and speed. Throwing speed was measured with a speed gun radar, and the centre of the ball when the ball entered the goal was digitalized for accuracy. Under these experimental conditions, the novice group was sensitive to instructions for reducing throwing speed and increasing accuracy when instructions emphasized accuracy. The expert group increased throwing speed when the instructions emphasized speed, but was not less accurate. The results indicate that it is advisable for experts’ speed to be close to maximum speed since it does not seem to have a significant effect on accuracy of the throw.  相似文献   

10.
We tested the hypothesis that variability in the timing of ball release in overarm throws affects ball speed. Nine unskilled and six skilled throwers made 30 throws fast and accurately from a sitting and standing position. Angular positions of finger and arm segments were recorded with search-coils at 1000 Hz; ball speed was measured with a radar gun. The time of ball release from the fingertips was measured with respect to seven arm kinematic reference points. Mean timing windows for ball release were 28 ms for unskilled throwers and 7 ms for skilled throwers. Mixed-model analyses of variance showed that a there was a statistically significant relationship between ball speed and the timing of ball release in unskilled throwers, but not in skilled throwers. This was presumably due to the difference in variability of the timing of ball release between the two groups. In contrast, skilled throwers showed a relationship between ball speed and peak forearm angular velocity (one measure of arm speed). We conclude that although variability in the timing of ball release can affect ball speed, this is only a major factor in unskilled throwers. When skilled throwers throw fast, variability in ball speed is due to variability in arm speed.  相似文献   

11.
We tested the hypothesis that variability in the timing of ball release in overarm throws affects ball speed. Nine unskilled and six skilled throwers made 30 throws fast and accurately from a sitting and standing position. Angular positions of finger and arm segments were recorded with search-coils at 1000 Hz; ball speed was measured with a radar gun. The time of ball release from the fingertips was measured with respect to seven arm kinematic reference points. Mean timing windows for ball release were 28?ms for unskilled throwers and 7?ms for skilled throwers. Mixed-model analyses of variance showed that a there was a statistically significant relationship between ball speed and the timing of ball release in unskilled throwers, but not in skilled throwers. This was presumably due to the difference in variability of the timing of ball release between the two groups. In contrast, skilled throwers showed a relationship between ball speed and peak forearm angular velocity (one measure of arm speed). We conclude that although variability in the timing of ball release can affect ball speed, this is only a major factor in unskilled throwers. When skilled throwers throw fast, variability in ball speed is due to variability in arm speed.  相似文献   

12.
Range in javelin throwing is determined by the release parameters and aerodynamic factors. The current study was designed to investigate the effects of release speed, release angle and uncorrected angle of attack measured at the foul line on the official javelin throwing result. The data were collected in international competitions for 26 elite male and 15 elite female javelin throwers (total 248 throws). Multiple regression models were constructed to predict the range of throw for a) individual throwers, b) a group of throwers using the mean value for each thrower in the analysis, and c) all individual throws registered for each gender separately. The data collection was carried out using a computerised photocell gate that consists of two invisible infrared walls two metres apart, perpendicular to the throwing direction. Release speed was found to have the highest correlation with the official throwing result. The three release parameters accounted for 56% of the variance in the official result for the male and 51% for the female throwers. For individual male and female throwers, the variance explained by the model was between 46 and 87%. Among the individual male throwers an increase of 1 m.s-1 in the release speed from 29 to 30 m.s-1 was calculated to increase the official result between 2.12 to 6.14 m while among the female throwers the effect of increase from 24 to 25 m.s-1 in the release speed was from 2.25 to 3.68 m. The study emphasises the importance of investigating javelin throwing biomechanics on an individual thrower basis.  相似文献   

13.
Kinematic comparisons of 1996 Olympic baseball pitchers   总被引:1,自引:0,他引:1  
The aim of this study was to compare and evaluate the kinematics of baseball pitchers who participated in the 1996 XXVI Centennial Olympic Games. Two synchronized video cameras operating at 120 Hz were used to video 48 pitchers from Australia, Japan, the Netherlands, Cuba, Italy, Korea, Nicaragua and the USA. All pitchers were analysed while throwing the fastball pitch. Twenty-one kinematic parameters were measured at lead foot contact, during the arm cocking and arm acceleration phases, and at the instant of ball release. These parameters included stride length, foot angle and foot placement; shoulder abduction, shoulder horizontal adduction and shoulder external rotation; knee and elbow flexion; upper torso, shoulder internal rotation and elbow extension angular velocities; forward and lateral trunk tilt; and ball speed. A one-way analysis of variance (P < 0.01) was used to assess kinematic differences. Shoulder horizontal adduction and shoulder external rotation at lead foot contact and ball speed at the instant of ball release were significantly different among countries. The greater shoulder horizontal abduction observed in Cuban pitchers at lead foot contact is thought to be an important factor in the generation of force throughout the arm cocking and arm acceleration phases, and may in part explain why Cuban pitchers generated the greatest ball release speed. We conclude that pitching kinematics are similar among baseball pitchers from different countries.  相似文献   

14.
Abstract

The study had two aspects: To determine the effect of warm-up throwing drills (employing “systematic overload”) upon subsequent speed and accuracy of the overarm throw in subjects with widely differing maximum velocities, and to determine the effect of a 6-week overload training (in which the speed and accuracy emphases were systematically varied) upon the speed and accuracy of the overarm throw.

The 60 subjects in the short-range phase of the study, examining the immediate effect of overload warm-up, received experimental treatments consisting of 10-oz., 15-oz., and regulation ball warm-up. The 48 subjects who participated in the long-range or training phase of the study received progressive overload in conjunction with various speed and/or accuracy emphases.

Computer services for this study were granted by the University of Wisconsin Research Committee through funds provided by the National Science Foundation and the Wisconsin Alumni Research Foundation.

The results of the study indicated that performance differences in throwing speed and accuracy, of high and low velocity performers that take place immediately following overload warm-up were statistically not significant. The initial speed and/or accuracy emphasis that was given appeared to have little effect on subsequent performance. The results provided no evidence that the use of a weighted ball resulted in immediate or long-range improvements in throwing speed or in throwing accuracy.  相似文献   

15.
The purpose of this study was to investigate joint kinetics of the throwing arms and role of trunk motion in skilled elementary school boys during an overarm distance throw. Throwing motions of 42 boys from second, fourth, and sixth grade were videotaped with three high-speed cameras operating at 300 fps. Seven skilled boys from each grade were selected on the basis of throwing distance for three-dimensional kinetic analysis. Joint forces, torques, and torque powers of the throwing arm joints were calculated from reconstructed three-dimensional coordinate data smoothed at cut-off frequencies of 10.5–15 Hz and by the inverse dynamics method. Throwing distance and ball velocity significantly increased with school grade. The angular velocity of elbow extension before ball release increased with school grade, although no significant increase between the grades was observed in peak extension torque of elbow joint. The joint torque power of shoulder internal/external rotation tended to increase with school grade. When teaching the overarm throw, elementary school teachers should observe large backward twisting of trunk during the striding phase and should keep in mind that young children, such as second graders (age 8 years), will be unable to effectively utilise shoulder external/internal rotation during the throwing phase.  相似文献   

16.
This study investigated ball release speed and performance kinematics between elite male and female cricket fast bowlers. Fifty-five kinematic parameters were collected for 20 male and 20 female elite fast bowlers. Group means were analysed statistically using an independent samples approach to identify differences. Significant differences were found between: ball release speed; run-up speed; the kinematics at back foot contact (BFC), front foot contact (FFC), and ball release (BR); and the timings between these key instants. These results indicate that the female bowlers generated less whole body linear momentum during the run-up than the males. The male bowlers also utilised a technique between BFC and FFC which more efficiently maintained linear momentum compared to the females. As a consequence of this difference in linear momentum at FFC, the females typically adopted a technique more akin to throwing where ball release speed was contributed to by both the whole body angular momentum and the large rotator muscles used to rotate the pelvis and torso segments about the longitudinal axis. This knowledge is likely to be useful in the coaching of female fast bowlers although future studies are required to understand the effects of anthropometric and strength constraints on fast bowling performance.  相似文献   

17.
The aim of this study was to compare and evaluate the kinematics of baseball pitchers who participated in the 1996 XXVI Centennial Olympic Games. Two synchronized video cameras operating at 120 Hz were used to video 48 pitchers from Australia, Japan, the Netherlands, Cuba, Italy, Korea, Nicaragua and the USA. All pitchers were analysed while throwing the fastball pitch. Twenty-one kinematic parameters were measured at lead foot contact, during the arm cocking and arm acceleration phases, and at the instant of ball release. These parameters included stride length, foot angle and foot placement; shoulder abduction, shoulder horizontal adduction and shoulder external rotation; knee and elbow flexion; upper torso, shoulder internal rotation and elbow extension angular velocities; forward and lateral trunk tilt; and ball speed. A one-way analysis of variance (P ? 0.01) was used to assess kinematic differences. Shoulder horizontal adduction and shoulder external rotation at lead foot contact and ball speed at the instant of ball release were significantly different among countries. The greater shoulder horizontal abduction observed in Cuban pitchers at lead foot contact is thought to be an important factor in the generation of force throughout the arm cocking and arm acceleration phases, and may in part explain why Cuban pitchers generated the greatest ball release speed. We conclude that pitching kinematics are similar among baseball pitchers from different countries.  相似文献   

18.
The aim of this study was to compare the active and passive range of motion (ROM) of the glenohumeral external rotation with the maximal external rotation and throwing performance during different throws with different wind-up techniques in elite team handball players. Twenty-two elite team handball players participated in the study in which the maximal ball release velocity and maximal external rotation during standing, with run-up and jump throws with two types of wind-ups were measured together with the maximal active and passive glenohumeral ROM of the external rotation, lying supine on a bench. Higher maximal external rotation was found during the throws with the whip-like wind-up in comparison to circular-like wind-up throws together with a lower external rotation during the active ROM test. No correlations were found between the ROM of the external rotation with the maximal ball release velocity and the maximal external rotation measured during the throws. It was concluded that ROM of the external rotation measured on the bench does not give any information about the maximal throwing performance or the external rotation angle during throwing and therefore cannot be used to identify potential fast throwers or injuries in elite team handball players.  相似文献   

19.
In order to get bounce and movement seam bowlers need to bowl the ball “into” the pitch. Standard deliveries by elite players are typically projected at around 7° below horizontal. In contrast, young players currently often need to release the ball almost horizontally in an effort to get the ball to bounce close enough to the batter. We anticipated that shortening the pitch could be a simple way to help young bowlers to release the ball at a better angle and with more consistency. Twenty county or best in club age group under 10 and under 11 seam bowlers were analysed bowling indoors on two different pitch lengths. They were found to project the ball on average 3.4° further below horizontal on a 16 yard pitch compared with a 19 yard pitch, while ball speed and position at release changed negligibly. Pitch length did not affect the consistency of the release parameters. The shorter pitch led to a ball release angle closer to that of elite bowlers without changing release speed, and this should enable players to achieve greater success and develop more variety in their bowling.  相似文献   

20.
The purpose of this study was to determine the optimum release conditions for the free throw in men's basketball. The study used hundreds of thousands of three-dimensional simulations of basketball trajectories. Five release variables were studied: release height, release speed, launch angle, side angle, and back spin. The free throw shooter was assumed to shoot at 70% and to release the ball 2.134 m (7 ft) above the ground. We found that the shooter should place up to 3 Hz of back spin on the ball, should aim the ball towards the back of the ring, and should launch the ball at 52 degrees to the horizontal. We also found that it is desirable to release the ball as high above the ground as possible, as long as this does not adversely affect the player's launch consistency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号