首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Abstract

The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([Vdot]O2max), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [Vdot]O2max (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.  相似文献   

2.
Abstract

In this study, we examined the effects of three recovery intensities on time spent at a high percentage of maximal oxygen uptake (t90[Vdot]O2max) during a short intermittent session. Eight endurance-trained male adolescents (16 ± 1 years) performed four field tests until exhaustion: a graded test to determine maximal oxygen uptake ([Vdot]O2max; 57.4 ± 6.1 ml · min?1 · kg?1) and maximal aerobic velocity (17.9 ± 0.4 km · h?1), and three intermittent exercises consisting of repeat 30-s runs at 105% of maximal aerobic velocity alternating with 30 s active recovery at 50% (IE50), 67% (IE67), and 84% (IE84) of maximal aerobic velocity. In absolute values, mean t90[Vdot]O2max was not significantly different between IE50 and IE67, but both values were significantly longer compared with IE84. When expressed in relative values (as a percentage of time to exhaustion), mean t90[Vdot]O2max was significantly higher during IE67 than during IE50. Our results show that both 50% and 67% of maximal aerobic velocity of active recovery induced extensive solicitation of the cardiorespiratory system. Our results suggest that the choice of recovery intensity depends on the exercise objective.  相似文献   

3.
Abstract

The aims of this study were to determine if the primary time constant (τ) for oxygen uptake ([Vdot]O2) at the onset of moderate-intensity treadmill exercise is related to endurance running performance, and to establish if τ could be considered a determinant of endurance running performance. Thirty-six endurance trained male runners performed a series of laboratory tests, on separate days, to determine maximal oxygen uptake ([Vdot]O2max), the ventilatory threshold (VT) and running economy. In addition, runners completed six transitions from walking (4 km · h?1) to moderate-intensity running (80% VT) for the determination of the [Vdot]O2 primary time constant and mean response time. During all tests, pulmonary gas-exchange was measured breath-by-breath. Endurance running performance was determined using a treadmill 5-km time-trial, after which runners were considered as combined performers (n=36) and, using a ranking system, high performers (n=10) and low performers (n=10). Relationships between τ and endurance running performance were quantified using correlation coefficients (r). Stepwise multiple regression was used to determine the primary predictor variables of endurance running performance in combined performers. Moderate correlations were observed between τ, mean response time and endurance running performance, but only for the combined performers (r=?0.55, P=0.001 and r=?0.50, P=0.002, respectively). The regression model for predicting 5-km performance did not include τ or mean response time. The velocity at [Vdot]O2max was strongly correlated to endurance running performance in all groups (r=0.72 – 0.84, P < 0.01) and contributed substantially to the prediction of performance. In conclusion, the results suggest that despite their role in determining the oxygen deficit and having a moderate relationship with endurance running performance, neither τ nor mean response time is a primary determinant of endurance running performance.  相似文献   

4.
Abstract

Maximal oxygen uptake ([Vdot]O2max) is considered the optimal method to assess aerobic fitness. The measurement of [Vdot]O2max, however, requires special equipment and training. Maximal exercise testing with determination of maximal power output offers a more simple approach. This study explores the relationship between [Vdot]O2max and maximal power output in 247 children (139 boys and 108 girls) aged 7.9–11.1 years. Maximal oxygen uptake was measured by indirect calorimetry during a maximal ergometer exercise test with an initial workload of 30 W and 15 W · min?1 increments. Maximal power output was also measured. A sample (n = 124) was used to calculate reference equations, which were then validated using another sample (n = 123). The linear reference equation for both sexes combined was: [Vdot]O2max (ml · min?1) = 96 + 10.6 · maximal power + 3.5 · body mass. Using this reference equation, estimated [Vdot]O2max per unit of body mass (ml · min?1 · kg?1) calculated from maximal power correlated closely with the direct measurement of [Vdot]O2max (r = 0.91, P <0.001). Bland-Altman analysis gave a mean limits of agreement of 0.2±2.9 (ml · min?1 · kg?1) (1 s). Our results suggest that maximal power output serves as a good surrogate measurement for [Vdot]O2max in population studies of children aged 8–11 years.  相似文献   

5.
Abstract

The aim of this study was to assess and compare the validity of the portable VmaxST telemetry metabolic measurement device with that of a standard measurement system (Vmax29). Thirty asymptomatic, moderately active males provided written, informed consent and completed two maximal graded treadmill exercise tests (Bruce) using the VmaxST and the Vmax29 metabolic measurement systems. Tests were performed in random order on separate days to obtain peak values for time to exhaustion, heart rate, systolic and diastolic blood pressure, oxygen consumption ([Vdot]O2), carbon dioxide production ([Vdot]CO2), ventilation ([Vdot] E), and respiratory exchange ratio (RER). Multivariate analysis of variance revealed no significant main effect (P = 0.88) between the two systems across any variable, suggesting similar measurement capabilities between the two systems. Linear regression analyses revealed moderate to high coefficients of determination for [Vdot]O2 (r 2 = 0.99), [Vdot]CO2 (r 2 = 0.99), [Vdot] E (r 2 = 0.99), and RER (r 2 = 0.89). Furthermore, Bland-Altman analyses demonstrated that the VmaxST yielded similar values to the Vmax29, suggesting good agreement between the two systems. Agreement was confirmed when the differences between the methods resulted in a small range as identified by the 95% limits of agreement. Findings from the current study confirm that the VmaxST is a valid device for measuring metabolic and physiological variables during exercise within a controlled laboratory setting.  相似文献   

6.
Abstract

In this study, we assessed the ventilatory response in 84 children (46 males: age 8.1 ± 1.0 years, body mass 34.2 ± 7.9 kg, height 1.32 ± 0.16 m; 38 females: age 8.0 ± 0.8 years, body mass 31.7 ± 8.7 kg, height 1.31 ± 0.08 m) during a cycle ergometer test to determine if there was an influence of gender on ventilatory efficiency. The test commenced at 25 W and increased by 10 W every minute. Expired air was collected through a face mask and analysed breath by breath. The ventilatory anaerobic threshold was determined according to gas exchange methods and we focused our attention on the analysis of carbon dioxide production ([Vdot]CO2), ventilation ([Vdot] E), the ratio [Vdot] E/[Vdot]CO2 and its slope. Differences between the sexes at maximal power output were strongly significant for [Vdot] E and [Vdot]CO2 (P = 0.0001 and P = 0.0004 respectively) and moderately significant for the [Vdot] E/[Vdot]CO2 ratio (P = 0.05). The slope of [Vdot] E versus [Vdot]CO2 was 30.8 ± 4.2 for males and 29.4 ± 3.2 for females, with no difference between the sexes (P = 0.1). In conclusion, although the peak values of [Vdot] E and [Vdot]CO2 were significantly different between the sexes, there were no such differences in ventilatory efficiency during a maximal incremental test expressed as the slope of [Vdot] E/[Vdot]CO2, at least in young children.  相似文献   

7.
Abstract

In this study, we examine the effect of exercise on the time and flow characteristics of the respiratory cycle profile at the point of volitional exercise termination. Eight males (mean age 29 years, s = 10; body mass 74 kg, s = 7; height 1.75 m, s = 0.04) undertook a cycle test to volitional exhaustion on a cycle ergometer, which allowed peak oxygen uptake ([Vdot]O2peak) to be measured (mean 51 ml · kg?1 · min?1, s = 7). At a later date, two sub-maximal tests to volitional exhaustion were completed in a random order at 76% (s = 6) and 86%[Vdot]O2peak (s = 7). As expected, the magnitude of the respiratory flow and time characteristics varied with the three exercise intensities, as did the point of exercise termination and terminal ventilation rates, which varied from 7 to 27 min and 112 to 132 litres · min?1 respectively. More importantly, however, at exercise termination some of the characteristics were similar, particularly the breathing frequency (at termination 49 breaths · min?1), the ratio between inspiration and total breath time (0.5), and the later occurrence of peak inspiratory flow (0.24 – 0.48 s). The coincident unity of these time and flow profile characteristics at exercise termination illustrates how the integration of timing and flow during breathing influence exercise capacity in non-elite athletes.  相似文献   

8.
Abstract

The present study was designed to examine physiological responses during motocross riding. Nine Finnish A-level motocross riders performed a 15-min ride at a motocross track and a test of maximal oxygen uptake ([Vdot]O2max) in the laboratory. Cardiopulmonary strain was measured continuously during the ride as well as in the [Vdot]O2max test. During the ride, mean [Vdot]O2 was 32 ml · kg?1 · min?1 (s = 4), which was 71% (s = 12) of maximum, while ventilation (V E) was 73% (s = 15) of its maximum. The relative [Vdot]O2 and V E values during the riding correlated with successful riding performance (r = 0.80, P < 0.01 and r = 0.79, P < 0.01, respectively). Mean heart rate was maintained at 95% (s = 7) of its maximum. Mean blood lactate concentration was 5.0 mmol · l?1 (s = 2.0) after the ride. A reduction of 16% (P < 0.001) in maximal isometric handgrip force was observed. In conclusion, motocross causes riders great physical stress. Both aerobic and anaerobic metabolism is required for the isometric and dynamic muscle actions experienced during a ride.  相似文献   

9.
Abstract

The purpose of this study was to establish whether critical power, as traditionally determined from the performance of three constant-load tests to exhaustion, is attained at the end of a 90-s all-out test in children. Sixteen healthy children (eight males and eight females; mean age 12.3 years, sx  = 0.1; body mass 39.6 kg, sx  = 1.8; peak [Vdot]O2 2.0 litres · min?1, sx  = 0.1) completed an incremental test to exhaustion to determine peak oxygen uptake (peak [Vdot]O2), three separate constant-load tests to exhaustion to calculate critical power, and an isokinetic 90-s all-out test. The end power of the 90-s test averaged over the last 10 s (140 W, sx  = 8) was significantly higher than critical power (105 W, sx  = 6; t = 6.8; P < 0.01), yet the two parameters were strongly correlated (r = 0.74; P < 0.01). After 60 s, there were no further reductions in power output during the 90-s test (P < 0.0001). In conclusion, at the end of a 90-s all-out test, children are able to produce power outputs well above critical power. This suggests that 90 s is not long enough to completely exhaust the anaerobic work capacity in children.  相似文献   

10.
Abstract

The Yo-Yo intermittent endurance test is frequently used to assess aerobic endurance performance in young soccer players but only the logical validity of the test has been shown to date. The main ai m of this study was to assess the criterion (i.e. association with maximal aerobic capacity, [Vdot]O2max) and construct validities of the test in young soccer players. A secondary aim was to examine possible shared variance of the Yo-Yo intermittent endurance test with other physical capacities. Sixty-two soccer players (age 13.7±0.5 years) from an Under-14 team participated. All players performed a battery of fitness tests to assess [Vdot]O2max, aerobic endurance performance (Yo-Yo intermittent endurance test), soccer dribbling endurance performance (Hoff dribbling test), and power performance (maximal vertical jump, 30-m sprint with 10-m split time). Results showed that the Yo-Yo intermittent endurance test was strongly correlated with [Vdot]O2max (r=0.63, P<0.001), thereby showing the test's criterion validity. Players with the best performance on the Yo-Yo intermittent endurance test had significantly higher [Vdot]O2max (P<0.001, large effect), and significantly better soccer dribbling endurance (P<0.001, large effect) and 30-m sprint times (P<0.05, medium effect). Logistic regression (r=0.79, P=0.0001) showed that Hoff dribbling test performance (explained variance=50.4%), [Vdot]O2max (explained variance=39.7%), and 30-m sprint time (explained variance=14.4%) were significant independent parameters contributing to performance on the Yo-Yo intermittent endurance test. Therefore, the Yo-Yo intermittent endurance test is a valid on-field aerobic endurance performance test for young soccer players, which can also be used to differentiate the maximal aerobic capacity, soccer dribbling endurance, and 30-m sprint performance of these players.  相似文献   

11.
Abstract

The aims of the study were to modify the training impulse (TRIMP) method of quantifying training load for use with intermittent team sports, and to examine the relationship between this modified TRIMP (TRIMPMOD) and changes in the physiological profile of team sport players during a competitive season. Eight male field hockey players, participating in the English Premier Division, took part in the study (mean±s: age 26±4 years, body mass 80.8±5.2 kg, stature 1.82±0.04 m). Participants performed three treadmill exercise tests at the start of the competitive season and mid-season: a submaximal test to establish the treadmill speed at a blood lactate concentration of 4 mmol · l?1; a maximal incremental test to determine maximal oxygen uptake ([Vdot]O2max) and peak running speed; and an all-out constant-load test to determine time to exhaustion. Heart rate was recorded during all training sessions and match-play, from which TRIMPMOD was calculated. Mean weekly TRIMPMOD was correlated with the change in [Vdot]O2max and treadmill speed at a blood lactate concentration of 4 mmol · l?1 from the start of to mid-season (P<0.05). The results suggest that TRIMPMOD is a means of quantifying training load in team sports and can be used to prescribe training for the maintenance or improvement of aerobic fitness during the competitive season.  相似文献   

12.
Abstract

Glutamine enhances the exercise-induced expansion of the tricarboxylic acid intermediate pool. The aim of the present study was to determine whether oral glutamine, alone or in combination with hyperoxia, influenced oxidative metabolism and cycle time-trial performance. Eight participants consumed either placebo or 0.125 g · kg body mass?1 of glutamine in 5 ml · kg body mass?1 placebo 1 h before exercise in normoxic (control and glutamine respectively) or hyperoxic (FiO2 = 50%; hyperoxia and hyperoxia + glutamine respectively) conditions. Participants then cycled for 6 min at 70% maximal oxygen uptake ([Vdot]O2max) immediately before completing a brief high-intensity time-trial (~4 min) during which a pre-determined volume of work was completed as fast as possible. The increment in pulmonary oxygen uptake during the performance test (Δ[Vdot]O2max, P = 0.02) and exercise performance (control: 243 s, s x  = 7; glutamine: 242 s, s x  = 3; hyperoxia: 231 s, s x  = 3; hyperoxia + glutamine: 228 s, s x  = 5; P < 0.01) were significantly improved in hyperoxic conditions. There was some evidence that glutamine ingestion increased Δ[Vdot]O2max in normoxia, but not hyperoxia (interaction drink/FiO2, P = 0.04), but there was no main effect or impact on performance. Overall, the data show no effect of glutamine ingestion either alone or in combination with hyperoxia, and thus no limiting effect of the tricarboxylic acid intermediate pool size, on oxidative metabolism and performance during maximal exercise.  相似文献   

13.
Abstract

The aim of this study was to compare the physiological and psychological responses of cyclists riding on a hard tail bicycle and on a full suspension bicycle. Twenty males participated in two series of tests. A test rig held the front axle of the bicycle steady while the rear wheel rotated against a heavy roller with bumps (or no bumps) on its surface. In the first series of tests, eight participants (age 19 – 27 years, body mass 65 – 82 kg) were tested on both the full suspension and hard tail bicycles with and without bumps fitted to the roller. The second series of test repeated the bump tests with a further six participants (age 22 – 31 years, body mass 74 – 94 kg) and also involved an investigation of familiarization effects with the final six participants (age 21 – 30 years, body mass 64 – 80 kg). Heart rate, oxygen consumption ([Vdot]O2), rating of perceived exertion (RPE) and comfort were recorded during 10 min sub-maximal tests. Combined data for the bumps tests show that the full suspension bicycle was significantly different (P < 0.001) from the hard tail bicycle on all four measures. Oxygen consumption, heart rate and RPE were lower on average by 8.7 (s = 3.6) ml · kg?1 · min?1, 32.1 (s = 12.1) beats · min?1 and 2.6 (s = 2.0) units, respectively. Comfort scores were higher (better) on average by 1.9 (s = 0.8) units. For the no bumps tests, the only statistically significant difference (P = 0.008) was in [Vdot]O2, which was lower for the hard tail bicycle by 2.2 (s = 1.7) ml · kg?1 · min?1. The results indicate that the full suspension bicycle provides a physiological and psychological advantage over the hard tail bicycle during simulated sub-maximal exercise on bumps.  相似文献   

14.
Abstract

In the present study, we assessed the effects of exercise intensity on salivary immunoglobulin A (s-IgA) and salivary lysozyme (s-Lys) and examined how these responses were associated with salivary markers of adrenal activation. Using a randomized design, 10 healthy active men participated in three experimental cycling trials: 50% maximal oxygen uptake ([Vdot]O2max), 75%[Vdot]O2max, and an incremental test to exhaustion. The durations of the trials were the same as for a preliminary incremental test to exhaustion (22.3 min, s x  = 0.8). Timed, unstimulated saliva samples were collected before exercise, immediately after exercise, and 1 h after exercise. In the incremental exhaustion trial, the secretion rates of both s-IgA and s-Lys were increased. An increase in s-Lys secretion rate was also observed at 75%[Vdot]O2max. No significant changes in saliva flow rate were observed in any trial. Cycling at 75%[Vdot]O2max and to exhaustion increased the secretion of α-amylase and chromogranin A immediately after exercise; higher cortisol values at 75%[Vdot]O2max and in the incremental exhaustion trial compared with 50%[Vdot]O2max were observed 1 h immediately after exercise only. These findings suggest that short-duration, high-intensity exercise increases the secretion rate of s-IgA and s-Lys despite no change in the saliva flow rate. These effects appear to be associated with changes in sympathetic activity and not the hypothalamic – pituitary – adrenal axis.  相似文献   

15.
Abstract

Mountain biking is a popular recreational pursuit and the physiological demands of cross-country style riding have been well documented. However, little is known regarding the growing discipline of gravity-assisted downhill cycling. We characterised the physiological demands of downhill mountain biking under typical riding conditions. Riding oxygen consumption ([Vdot]O2) and heart rate (HR) were measured on 11 male and eight female experienced downhill cyclists and compared with data during a standardised incremental to maximum ([Vdot]O2max) exercise test. The mean [Vdot]O2 while riding was 23.1 ± 6.9 ml · kg?1 · min?1 or 52 ± 14% of [Vdot]O2max with corresponding heart rates of 146 ± 11 bpm (80 ± 6% HRmax). Over 65% of the ride was in a zone at or above an intensity level associated with improvements in health-related fitness. However, the participants’ heart rates and ratings of perceived exertion were artificially inflated in comparison with the actual metabolic demands of the downhill ride. Substantial muscular fatigue was evident in grip strength, which decreased 5.4 ± 9.4 kg (5.5 ± 11.2%, P = 0.03) post-ride. Participation in downhill mountain biking is associated with significant physiological demands, which are in a range associated with beneficial effects on health-related fitness.  相似文献   

16.
Abstract

In this study, we evaluated the effects of a novel pedal design, characterized by a downward and forward shift of the cleat fixing platform relative to the pedal axle, on maximal power output and mechanical efficiency in 22 well-trained cyclists. Maximal power output was measured during a series of short (5-s) intermittent sprints on an isokinetic cycle ergometer at cadences from 40 to 120 rev · min?1. Mechanical efficiency was evaluated during a submaximal incremental exercise test on a bicycle ergometer using continuous [Vdot]O2 and [Vdot]CO2 measurement. Similar tests with conventional pedals and the novel pedals, which were mounted on the individual racing bike of the participant, were randomized. Maximal power was greater with novel pedals than with conventional pedals (between 6.0%, sx  = 1.5 at 40 rev · min?1 and 1.8%, sx  = 0.7 at 120 rev · min?1; P = 0.01). Torque production between crank angles of 60° and 150° was higher with novel pedals than with conventional pedals (P = 0.004). The novel pedal design did not affect whole-body [Vdot]O2 or [Vdot]CO2. Mechanical efficiency was greater with novel pedals than with conventional pedals (27.2%, sx  = 0.9 and 25.1%, sx  = 0.9% respectively; P = 0.047; effect size = 0.9). In conclusion, the novel pedals can increase maximal power output and mechanical efficiency in well-trained cyclists.  相似文献   

17.
Abstract

We examined the reliability and validity of the assistant referee intermittent endurance test (ARIET), a modified Yo-Yo IE2 test including shuttles of sideways running. The ARIET was carried out on 198 Italian (Serie A-B, Lega-Pro and National Level) and 47 Danish elite soccer assistant referees. Reproducibility was tested for 41 assistant referees on four occasions each separated by one week. The ARIET intraclass correlation coefficients and typical error of measurement ranged from 0.96 to 0.99 and 3.1 to 5.7%, respectively. ARIET performance for Serie A and B was 23 and 25% greater than in Lega-Pro (P < 0.001). The lowest cut-off value derived from receiving operator characteristic discriminating Serie A-B from Lega-Pro was 1300 m. The ARIET performance was significantly correlated with [Vdot]O2max (r = 0.78, P < 0.001), %HRmax after 4 min of ARIET (r = ? 0.81, P < 0.001) and Yo-Yo IR1 performance (r = 0.95, P < 0.001), but not sprint performance (r = ?0.15; P = 0.58). The results showed that ARIET is a reproducible and valid test that is able to discriminate between assistant referees of different competitive levels. The lack of correlation with sprinting ability and close correlations with aerobic power, intermittent shuttle running and sub-maximal ARIET heart rate loading provide evidence that ARIET is arelevant test for assessment of intermittent endurance capacity of soccer assistant referees.  相似文献   

18.
Abstract

The aim was to investigate performance variables and indicators of cardiovascular health profile in elderly soccer players (SP, n = 11) compared to endurance-trained (ET, n = 8), strength-trained (ST, n = 7) and untrained (UT, n = 7) age-matched men. The 33 men aged 65–85 years underwent a testing protocol including measurements of cycle performance, maximal oxygen uptake (VO2max) and body composition, and muscle fibre types and capillarisation were determined from m. vastus lateralis biopsy. In SP, time to exhaustion was longer (16.3 ± 2.0 min; P < 0.01) than in UT (+48%) and ST (+41%), but similar to ET (+1%). Fat percentage was lower (P < 0.05) in SP (–6.5% points) than UT but not ET and ST. Heart rate reserve was higher (P < 0.05) in SP (104 ± 16 bpm) than UT (+21 bpm) and ST (+24 bpm), but similar to ET (+2 bpm), whereas VO2max was not significantly different in SP (30.2 ± 4.9 ml O2 · min?1 · kg?1) compared to UT (+14%) and ST (+9%), but lower (P < 0.05) than ET (?22%). The number of capillaries per fibre was higher (P < 0.05) in SP than UT (53%) and ST (42%) but similar to ET. SP had less type IIx fibres than UT (?12% points). In conclusion, the exercise performance and cardiovascular health profile are markedly better for lifelong trained SP than for age-matched UT controls. Incremental exercise capacity and muscle aerobic capacity of SP are also superior to lifelong ST athletes and comparable to endurance athletes.  相似文献   

19.
Abstract

In this study, we examined the effects of different work:rest durations during 20 min intermittent treadmill running and subsequent performance. Nine males (mean age 25.8 years, s = 6.8; body mass 73.9 kg, s = 8.8; stature 1.75 m, s = 0.05; [Vdot]O2max 55.5 ml · kg?1 · min?1, s = 5.8) undertook repeated sprints at 120% of the speed at which [Vdot]O2max was attained interspersed with passive recovery. The work:rest ratio was constant (1:1.5) with trials involving either short (6:9 s) or long (24:36 s) work:rest exercise protocols (total exercise time 8 min). Each trial was followed by a performance run to volitional exhaustion at the same running speed. Testing order was randomized and counterbalanced. Heart rate, oxygen consumption, respiratory exchange ratio, and blood glucose were similar between trials (P > 0.05). Blood lactate concentration was greater during the long than the short exercise protocol (P < 0.05), whereas blood pH was lower during the long than the short exercise protocol (7.28, s = 0.11 and 7.30, s = 0.03 at 20 min, respectively; P < 0.05). Perceptions of effort were greater throughout exercise for the long than the short exercise protocol (16.6, s = 1.4 and 15.1, s = 1.6 at 20 min, respectively; P < 0.05) and correlated with blood lactate (r = 0.43) and bicarbonate concentrations (r = ?0.59; P < 0.05). Although blood lactate concentration at 20 min was related to performance time (r = ?0.56; P < 0.05), no differences were observed between trials for time to exhaustion (short exercise protocol: 95.8 s, s = 30.0; long exercise protocol: 92.0 s, s = 37.1) or physiological responses at exhaustion (P > 0.05). Our results demonstrate that 20 min of intermittent exercise involving a long work:rest duration elicits greater metabolic and perceptual strain than intermittent exercise undertaken with a short work:rest duration but does not affect subsequent run time to exhaustion.  相似文献   

20.
Abstract

The single-stage treadmill walking test of Ebbeling et al. is commonly used to predict maximal oxygen consumption ([Vdot]O2max) from a submaximal effort between 50% and 70% of the participant's age-predicted maximum heart rate. The purpose of this study was to determine if this submaximal test correctly predicts [Vdot]O2max at the low (50% of maximum heart rate) and high (70% of maximum heart rate) ends of the specified heart rate range for males and females aged 18 – 55 years. Each of the 34 participants completed one low-intensity and one high-intensity trial. The two trials resulted in significantly different estimates of [Vdot]O2max (low-intensity trial: mean 40.5 ml · kg?1 · min?1, s = 9.3; high-intensity trial: 47.5 ml · kg?1 · min?1, s = 8.8; P < 0.01). A subset of 22 participants concluded their second trial with a [Vdot]O2max test (mean 47.9 ml · kg?1 · min?1, s = 8.9). The low-intensity trial underestimated (mean difference = ?3.5 ml · kg?1 · min?1; 95% CI = ?6.4 to ?0.6 ml · kg?1 · min?1; P = 0.02) and the high-intensity trial overestimated (mean difference = 3.5 ml · kg?1 · min?1; 95% CI = 1.1 to 6.0 ml · kg?1 · min?1; P = 0.01) the measured [Vdot]O2max. The predictive validity of Ebbeling and colleagues' single-stage submaximal treadmill walking test is diminished when performed at the extremes of the specified heart rate range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号