首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

The aim of the present study was to examine the relationship between intensities of exercise during match-play of elite-standard soccer referees with those of the players from the same match. Match analysis data were collected (Prozone® Leeds, UK) for 18 elite-standard soccer referees (age 26–49 years) on FA Premier League matches during the 2008/09 English FA Premier League season (236 observations). Running categories for referees and players were as follows: total distance covered (m); high-speed running distance (speed >19.8 km · h?1); and sprinting distance (speed >25.2 km · h?1). Analysis of the distance–time regression coefficients revealed no differences between the referees' and players' within-match rates of change for total distance covered (?0.594 ± 0.394 vs. ?0.713 ± 0.269 m · min?1; P = 0.104), high-speed running (?0.039 ± 0.077 vs. ?0.059 ± 0.030 m · min?1; P = 0.199), and sprinting (?0.003 ± 0.039 vs. ?0.021 ± 0.017 m · min?1; P = 0.114). In addition, there were no differences between across-season rates of change for total distance (–26.756 ± 40.434 vs. ?20.031 ± 25.502 m per match day; P = 0.439) and sprinting (–9.662 ± 7.564 vs. ?8.589 ± 4.351 m per match day; P = 0.542). These results show that elite-standard soccer referees' intensities of exercise during match-play are interrelated with those of the players and thus demonstrate that referees are able to keep pace with the players during FA Premier League matches.  相似文献   

2.
Abstract

In this study, we investigated the effect of ingesting carbohydrate alone or carbohydrate with protein on functional and metabolic markers of recovery from a rugby union-specific shuttle running protocol. On three occasions, at least one week apart in a counterbalanced order, nine experienced male rugby union forwards ingested placebo, carbohydrate (1.2 g · kg body mass?1 · h?1) or carbohydrate with protein (0.4 g · kg body mass?1 · h?1) before, during, and after a rugby union-specific protocol. Markers of muscle damage (creatine kinase: before, 258 ± 171 U · L?1 vs. 24 h after, 574 ± 285 U · L?1; myoglobin: pre, 50 ± 18 vs. immediately after, 210 ± 84 nmol · L?1; P < 0.05) and muscle soreness (1, 2, and 3 [maximum soreness = 8] for before, immediately after, and 24 h after exercise, respectively) increased. Leg strength and repeated 6-s cycle sprint mean power were slightly reduced after exercise (93% and 95% of pre-exercise values, respectively; P < 0.05), but were almost fully recovered after 24 h (97% and 99% of pre-exercise values, respectively). There were no differences between trials for any measure. These results indicate that in experienced rugby players, the small degree of muscle damage and reduction in function induced by the exercise protocol were not attenuated by the ingestion of carbohydrate and protein.  相似文献   

3.
This study assessed the effectiveness of a 6-week, high-intensity, games-based intervention on physiological and anthropometric indices of health, in normal weight (n = 26; 32.5 ± 8.9 kg) and obese (n = 29; 49.3 ± 8.9 kg) children (n = 32 boys, 23 girls), aged 8–10 years. Children were randomised into an exercise or control group. The exercise group participated in a twice-weekly, 40 min active games intervention, alongside their usual school physical education classes. The control group did not take part in the intervention. Before and after the intervention, participants completed both a maximal and submaximal graded exercise test. The submaximal exercise test comprised of a 6 min, moderate- and 6 min heavy-intensity bout, interspersed with a 5 min recovery. The exercise group demonstrated improvements in maximal oxygen uptake (51.4 ± 8.5 vs 54.3 ± 9.6 ml · kg?1 · min?1) and peak running speed (11.3 ± 1.6 vs 11.9 ± 1.6 km · h?1), and a reduction in the oxygen cost of submaximal exercise between assessments (< .05). A decrease in waist circumference and increase in muscle mass were observed between assessments for the obese participants randomised to the intervention (both < .05). This study demonstrates that a short-term, high-intensity games intervention may elicit positive changes in physiological and anthropometric indices of health in normal weight and obese children.  相似文献   

4.
Abstract

There is little published data in relation to the effects of caffeine upon cycling performance, speed and power in trained cyclists, especially during cycling of ~60 s duration. To address this, eight trained cyclists performed a 1 km time-trial on an electronically braked cycle ergometer under three conditions: after ingestion of 5 mg · kg?1 caffeine, after ingestion of a placebo, or a control condition. The three time-trials were performed in a randomized order and performance time, mean speed, mean power and peak power were determined. Caffeine ingestion resulted in improved performance time (caffeine vs. placebo vs. control: 71.1 ± 2.0 vs. 73.4 ± 2.3 vs. 73.3 ± 2.7 s; P = 0.02; mean ± s). This change represented a 3.1% (95% confidence interval: 0.7–5.6) improvement compared with the placebo condition. Mean speed was also higher in the caffeine than placebo and control conditions (caffeine vs. placebo vs. control: 50.7 ± 1.4 vs. 49.1 ± 1.5 vs. 49.2 ± 1.7 km · h?1; P = 0.0005). Mean power increased after caffeine ingestion (caffeine vs. placebo vs. control: 523 ± 43 vs. 505 ± 46 vs. 504 ± 38 W; P = 0.007). Peak power also increased from 864 ± 107 W (placebo) and 830 ± 87 W (control) to 940 ± 83 W after caffeine ingestion (P = 0.027). These results provide support for previous research that found improved performance after caffeine ingestion during short-duration high-intensity exercise. The magnitude of the improvements observed in our study could be due to our use of sport-specific ergometry, a tablet form and trained participants.  相似文献   

5.
Abstract

This study investigated the influence of dehydration during soccer-type intermittent exercise on isokinetic and isometric muscle function. Eight soccer players performed two 90-min high-intensity intermittent shuttle-running trials without (NF) or with (FL) fluid ingestion (5 ml · kg?1 before and 2 ml · kg?1 every 15 min). Isokinetic and isometric strength and muscular power of knee flexors and knee extensors were measured pre-exercise, at half-time and post-exercise using isokinetic dynamometry. Sprint performance was monitored throughout the simulated-soccer exercise. Isokinetic knee strength was reduced at faster (3.13 rad · s?1; P = 0.009) but not slower (1.05 rad · s?1; P = 0.063) contraction speeds with exercise; however, there was no difference between FL and NF. Peak isometric strength of the knee extensors (P = 0.002) but not the knee flexors (P = 0.065) was significantly reduced with exercise with no difference between FL and NF. Average muscular power was reduced over time at both 1.05 rad · s?1 (P = 0.01) and 3.14 rad · s?1 (P = 0.033) but was not different between FL and NF. Mean 15-m sprint time increased with duration of exercise (P = 0.005) but was not different between FL and NF. In summary, fluid ingestion during 90 min of soccer-type exercise was unable to offset the reduction in isokinetic and isometric strength and muscular power of the knee extensors and flexors.  相似文献   

6.
Nine male student games players consumed either flavoured water (0.1 g carbohydrate, Na+ 6 mmol · l?1), a solution containing 6.5% carbohydrate-electrolytes (6.5 g carbohydrate, Na+ 21 mmol · l?1) or a taste placebo (Na+ 2 mmol · l?1) during an intermittent shuttle test performed on three separate occasions at an ambient temperature of 30°C (dry bulb). The test involved five 15-min sets of repeated cycles of walking and variable speed running, each separated by a 4-min rest (part A of the test), followed by 60 s run/60 s rest until exhaustion (part B of the test). The participants drank 6.5 ml · kg?1 of fluid as a bolus just before exercise and thereafter 4.5 ml · kg?1 during every exercise set and rest period (19 min). There was a trial order effect. The total distance completed by the participants was greater in trial 3 (8441 ± 873 m) than in trial 1 (6839 ± 512, P < 0.05). This represented a 19% improvement in exercise capacity. However, the trials were performed in a random counterbalanced order and the participants completed 8634 ± 653 m, 7786 ± 741 m and 7099 ± 647 m in the flavoured water (FW), placebo (P) and carbohydrate-electrolyte (CE) trials, respectively (P = 0.08). Sprint performance was not different between the trials but was impaired over time (FW vs P vs CE: set 1, 2.41 ± 0.02 vs 2.39 ± 0.03 vs 2.39 ± 0.03 s; end set, 2.46 ± 0.03 vs 2.47 ± 0.03 vs 2.47 ± 0.02 s; main

effect time, P < 0.01). The rate of rise in rectal temperature was greater in the carbohydrate-electrolyte trial (rise in rectal temperature/duration of trial, °C · h?1; FW vs CE, P < 0.05; P vs CE, N.S.). Blood glucose concentrations were higher in the carbohydrate-electrolyte than in the other two trials (FW vs P vs CE: rest, 4.4 ± 0.1 vs 4.3 ± 0.1 vs 4.2 ± 0.1 mmol · l?1; end of exercise, 5.4 ± 0.3 vs 6.4 ± 0.6 vs 7.2 ± 0.5 mmol · l?1; main effect trial, P < 0.05; main effect time, P < 0.01). Plasma free fatty acid concentrations at the end of exercise were lower in the carbohydrate-electrolyte trial than in the other two trials (FW vs P vs CE: 0.57 ± 0.08 vs 0.53 ± 0.11 vs 0.29 ± 0.04 mmol · l?1; interaction, P < 0.01). The correlation between the rate of rise in rectal temperature (°C · h?1) and the distance completed was ?0.91, ?0.92 and ?0.96 in the flavoured water, placebo and carbohydrate-electrolyte conditions, respectively (P < 0.01). Heart rate, blood pressure, plasma ammonia, blood lactate, plasma volume and rate of perceived exertion were not different between the three fluid trials. Although drinking the carbohydrate-electrolyte solution induced greater metabolic changes than the flavoured water and placebo solutions, it is unlikely that in these unacclimated males carbohydrate availability was a limiting factor in the performance of intermittent running in hot environmental conditions.  相似文献   

7.
Purpose: Correlations between fatigue-induced changes in exercise performance and maximal rate of heart rate (HR) increase (rHRI) may be affected by exercise intensity during assessment. This study evaluated the sensitivity of rHRI for tracking performance when assessed at varying exercise intensities. Method: Performance (time to complete a 5-km treadmill time-trial [5TTT]) and rHRI were assessed in 15 male runners following 1 week of light training, 2 weeks of heavy training (HT), and a 10-day taper (T). Maximal rate of HR increase (measured in bpm·s?1) was the first derivative maximum of a sigmoidal curve fit to HR data recorded during 5 min of running at 8 km·h?1 (rHRI8km·h?1), and during subsequent transition to 13 km·h?1 (rHRI8–13km·h?1) for a further 5 min. Results: Time to complete a 5-km treadmill time-trial was likely slower following HT (effect size ± 90% confidence interval = 0.16 ± 0.06), and almost certainly faster following T (–0.34 ± 0.08). Maximal rate of HR increase during 5 min of running at 8 km·h?1 and rHRI8–13km·h?1 were unchanged following HT and likely increased following T (0.77 ± 0.45 and 0.66 ± 0.62, respectively). A moderate within-individual correlation was found between 5TTT and rHRI8km·h?1 (r value ± 90% confidence interval = –.35 ± .32). However, in a subgroup of athletes (= 7) who were almost certainly slower to complete the 5TTT (4.22 ± 0.88), larger correlations were found between the 5TTT and rHRI8km·h?1 (r = –.84 ± .22) and rHRI8–13km·h?1 (r = –.52 ± .41). Steady-state HR during rHRI assessment in this group was very likely greater than in the faster subgroup (≥ 1.34 ± 0.86). Conclusion(s): The 5TTT performance was tracked by both rHRI8km·h?1 and rHRI8–13km·h?1. Correlations between rHRI and performance were stronger in a subgroup of athletes who exhibited a slower 5TTT. Individualized workloads during rHRI assessment may be required to account for varying levels of physical conditioning.  相似文献   

8.
Abstract

It is not known if ergogenic effects of caffeine ingestion in athletic groups occur in the sedentary. To investigate this, we used a counterbalanced, double-blind, crossover design to examine the effects of caffeine ingestion (6 mg · kg?1 body-mass) on exercise performance, substrate utilisation and perceived exertion during 30 minutes of self-paced stationary cycling in sedentary men. Participants performed two trials, one week apart, after ingestion of either caffeine or placebo one hour before exercise. Participants were instructed to cycle as quickly as they could during each trial. External work (J · kg?1) after caffeine ingestion was greater than after placebo (P = 0.001, effect size [ES] = 0.3). Further, heart rate, oxygen uptake and energy expenditure during exercise were greater after caffeine ingestion (P = 0.031, ES = 0.4; P = 0.009, ES = 0.3 and P = 0.018, ES = 0.3; respectively), whereas ratings of perceived exertion and respiratory exchange ratio values did not differ between trials (P = 0.877, ES = 0.1; P = 0.760, ES = 0.1; respectively). The ability to do more exercise after caffeine ingestion, without an accompanying increase in effort sensation, could motivate sedentary men to participate in exercise more often and so reduce adverse effects of inactivity on health.  相似文献   

9.
Running downhill, in comparison to running on the flat, appears to involve an exaggerated stretch-shortening cycle (SSC) due to greater impact loads and higher vertical velocity on landing, whilst also incurring a lower metabolic cost. Therefore, downhill running could facilitate higher volumes of training at higher speeds whilst performing an exaggerated SSC, potentially inducing favourable adaptations in running mechanics and running economy (RE). This investigation assessed the efficacy of a supplementary 8-week programme of downhill running as a means of enhancing RE in well-trained distance runners. Nineteen athletes completed supplementary downhill (?5% gradient; n?=?10) or flat (n?=?9) run training twice a week for 8 weeks within their habitual training. Participants trained at a standardised intensity based on the velocity of lactate turnpoint (vLTP), with training volume increased incrementally between weeks. Changes in energy cost of running (EC) and vLTP were assessed on both flat and downhill gradients, in addition to maximal oxygen uptake (?O2max). No changes in EC were observed during flat running following downhill (1.22?±?0.09 vs 1.20?±?0.07?Kcal?kg?1?km?1, P?=?.41) or flat run training (1.21?±?0.13 vs 1.19?±?0.12?Kcal?kg?1?km?1). Moreover, no changes in EC during downhill running were observed in either condition (P?>?.23). vLTP increased following both downhill (16.5?±?0.7 vs 16.9?±?0.6?km?h?1 , P?=?.05) and flat run training (16.9?±?0.7 vs 17.2?±?1.0?km?h?1, P?=?.05), though no differences in responses were observed between groups (P?=?.53). Therefore, a short programme of supplementary downhill run training does not appear to enhance RE in already well-trained individuals.  相似文献   

10.
Abstract

Twelve healthy participants performed two identical high-intensity 40 km cycling trials (morning and evening) under controlled laboratory conditions. Echocardiograms and venous blood samples were collected before and after each exercise bout. Cardiac electro-mechanical-delay (cEMD) was measured as QRS-complex onset to peak systolic (S’) and early diastolic (E’) tissue velocities. Myocardial strain and strain rates were assessed in longitudinal, circumferential and radial planes at the left ventricular apex and base. Cardiac troponin I (cTnI) and N-terminal Pro-Brain Natriuretic Peptide (NT-proBNP) were assessed as biomarkers of cardiomyocyte damage and wall stress. cEMD was lengthened after both morning (S’: 160 ± 30 vs. 193 ± 27; E’: 478 ± 60 vs. 620 ± 87, P < 0.05) and evening (S’: 155 ± 29 vs. 195 ± 31; E’: 488 ± 42 vs. 614 ± 61, P < 0.05) trials. A reduction in peak S’ (morning: 6.96 ± 1.12 vs. 6.66 ± 0.89; evening: 7.09 ± 0.94 vs. 7.02 ± 0.76) was correlated with cEMD (r = ?0.335, P < 0.05). Peak longitudinal strain was reduced, atrial strain rates were sporadically increased in both trials post-cycling. cTnI was elevated in only two participants (0.04 µg · L?1, 0.03 µg · L?1), whilst NT-proBNP was below the clinical cut-off point in all participants. Prolonged-cycling resulted in a lengthening of cEMD, small changes in aspects of left ventricular deformation and sporadic increases in cardiac biomarkers. None of these effects were moderated by time-of-day.  相似文献   

11.
Limited data are available on the female athlete triad (Triad) in athletes from minority groups. We explored subclinical and clinical Triad components amongst adolescent elite Kenyan athletes (n = 61) and non-athletes (n = 49). Participants completed demographic, health, sport and menstrual history questionnaires as well as a 5-day weighed dietary record and exercise log to calculate energy availability (EA). Ultrasound assessed calcaneus bone mineral density (BMD). Eating Disorder Inventory subscales and the Three-Factor Eating Questionnaire’s cognitive dietary restraint subscale measured disordered eating (DE). EA was lower in athletes than non-athletes (36.5 ± 4.5 vs. 39.5 ± 5.7 kcal ? kg FFM?1 ? d?1, P = 0.003). More athletes were identified with clinical low EA (17.9% vs. 2.2%, OR = 9.5, 95% CI 1.17–77, P = 0.021) and clinical menstrual dysfunction (32.7% vs. 18.3%, χ2 = 7.1, P = 0.02). Subclinical (75.4% vs. 71.4%) and clinical DE (4.9% vs. 10.2%, P = 0.56) as well as BMD were similar between athletes and non-athletes. More athletes had two Triad components than non-athletes (8.9% vs. 0%, OR = 0.6, 95% CI 0.5–6.9, P = 0.05). Kenyan adolescent participants presented with one or more subclinical and/or clinical Triad component. It is essential that athletes and their entourage be educated on their energy needs including health and performance consequences of an energy deficiency.  相似文献   

12.
This study examined the separate and combined effects of heat acclimation and hand cooling on post-exercise cooling rates following bouts of exercise in the heat. Seventeen non-heat acclimated (NHA) males (mean ± SE; age, 23 ± 1 y; mass, 75.30 ± 2.27 kg; maximal oxygen consumption [VO2 max], 54.1 ± 1.3 ml·kg?1·min?1) completed 2 heat stress tests (HST) when NHA, then 10 days of heat acclimation, then 2 HST once heat acclimated (HA) in an environmental chamber (40°C; 40%RH). HSTs were 2 60-min bouts of treadmill exercise (45% VO2 max; 2% grade) each followed by 10 min of hand cooling (C) or no cooling (NC). Heat acclimation sessions were 90–240 min of treadmill or stationary bike exercise (60–80% VO2 max). Repeated measures ANOVA with Fishers LSD post hoc (α < 0.05) identified differences. When NHA, C (0.020 ± 0.003°C·min?1) had a greater cooling rate than NC (0.013 ± 0.003°C·min?1) (mean difference [95%CI]; 0.007°C [0.001,0.013], P = 0.035). Once HA, C (0.021 ± 0.002°C·min?1) was similar to NC (0.025 ± 0.002°C·min?1) (0.004°C [?0.003,0.011], P = 0.216). Hand cooling when HA (0.021 ± 0.002°C·min?1) was similar to when NHA (0.020 ± 0.003°C·min?1) (P = 0.77). In conclusion, when NHA, C provided greater cooling rates than NC. Once HA, C and NC provided similar cooling rates.  相似文献   

13.
The primary aim of this study was to determine whether variations in rebound speed and accuracy of a tennis ball could be detected during game-simulated conditions when using three rackets strung with three string tensions. Tennis balls were projected from a ball machine towards participants who attempted to stroke the ball cross-court into the opposing singles court. The rebound speed of each impact was measured using a radar gun located behind the baseline of the court. An observer also recorded the number of balls landing in, long, wide and in the net. It was found that rebound speeds for males (110.1?±?10.2?km?·?h?1; mean?±?s) were slightly higher than those of females (103.6?±?8.6?km?·?h?1; P?<?0.05) and that low string tensions (180?N) produced greater rebound speeds (108.1?±?9.9?km?·?h?1) than high string tensions (280?N, 105.3?±?9.6?km?·?h?1; P?<?0.05). This finding is in line with laboratory results and theoretical predictions of other researchers. With respect to accuracy, the type of error made was significantly influenced by the string tension (P?<?0.05). This was particularly evident when considering whether the ball travelled long or landed in the net. High string tension was more likely to result in a net error, whereas low string tension was more likely to result in the ball travelling long. It was concluded that both gender and the string tension influence the speed and accuracy of the tennis ball.  相似文献   

14.
Abstract

Time-motion analyses and physiological measurements were performed to investigate the physiological demands of football referees (n = 15) and assistant referees (n = 15) in international games and to examine whether high-intensity running (HIR) correlates to the referees' ability to keep up with play. Total distance covered (10.27 ± 0.90 vs. 6.76 ± 0.83 km) and HIR (1.92 ± 0.58 vs. 0.97 ± 0.22 km) was higher (P < 0.05) for referees than assistant referees, while sprinting distance was not different. Referees covered 0.89 ± 0.37 km by backwards running and assistant referees covered 1.54 ± 0.66 km by sideways running. Mean heart rate was higher (P < 0.05) for referees than assistant referees (150 ± 3 vs. 123 ± 3 b.p.m.), whereas blood lactate was not different. Backwards/sideways running decreased (P < 0.05) from the first to the last 15-min period for referees (49%) and assistant referees (42%), whereas HIR was unaltered. HIR was inversely correlated with the five highest distances from infringements in both halves (r = ?0.60 and ?0.58, P < 0.05). In conclusion, international match officials carry out an important amount of HIR throughout games, while low-intensity and unorthodox running activities are reduced during games. Referees performing the most high-intensity work are better to keep up with play. The match activities differ significantly between referees and assistant referees, which should be considered in training and testing procedures.  相似文献   

15.
Abstract

The purpose of this study was to compare the effects of two practical precooling techniques (skin cooling vs. skin + core cooling) on cycling time trial performance in warm conditions. Six trained cyclists completed one maximal graded exercise test ([Vdot]O2peak 71.4 ± 3.2 ml · kg?1 · min?1) and four ~40 min laboratory cycling time trials in a heat chamber (34.3°C ± 1.1°C; 41.2% ± 3.0% rh) using a fixed-power/variable-power format. Cyclists prepared for the time trial using three techniques administered in a randomised order prior to the warm-up: (1) no cooling (control), (2) cooling jacket for 40 min (jacket) or (3) 30-min water immersion followed by a cooling jacket application for 40 min (combined). Rectal temperature prior to the time trial was 37.8°C ± 0.1°C in control, similar in jacket (37.8°C ± 0.3°C) and lower in combined (37.1°C ± 0.2°C, P < 0.01). Compared with the control trial, time trial performance was not different for jacket precooling (?16 ± 36 s, ?0.7%; P = 0.35) but was faster for combined precooling (?42 ± 25 s, ?1.8%; P = 0.009). In conclusion, a practical combined precooling strategy that involves immersion in cool water followed by the use of a cooling jacket can produce decrease in rectal temperature that persist throughout a warm-up and improve laboratory cycling time trial performance in warm conditions.  相似文献   

16.
Abstract

The aim of this study was to investigate the effect of ingesting a carbohydrate-electrolyte solution, during the 90-min Loughborough Intermittent Shuttle Test, on soccer skill performance. Seventeen male soccer players ingested either a 6.4% carbohydrate-electrolyte solution or placebo solution equivalent to 8 ml · kg?1 body mass before exercise and 3 ml · kg?1 body mass after every 15 min of exercise, in a double-blind randomized cross-over design, with the trials separated by 7 days. The evening before the main trial, the participants performed glycogen-reducing exercise on a cycle ergometer (80 min at 70%[Vdot]O2max) and were then fed a low-carbohydrate meal. After a 12-h overnight fast, they performed The Loughborough Soccer Passing Test before and after every 15 min of exercise. Analysis of the combined skill test data showed a significant time effect (P = 0.001) with differences between 0–45 and 75–90 min (P < 0.05). There was a 3% reduction in skill performance from before to after exercise in the carbohydrate-electrolyte trial, whereas in the placebo trial the decrease was 14% (P = 0.07). In conclusion, skill performance during the simulated soccer activity appeared to deteriorate in the last 15–30 min of exercise. However, providing 52 g · h?1 carbohydrate during exercise showed a tendency to better maintain soccer skill performance than a taste-matched placebo.  相似文献   

17.
The purpose of this study was to evaluate two practical interval training protocols on cardiorespiratory fitness, lipids and body composition in overweight/obese women. Thirty women (mean ± SD; weight: 88.1 ± 15.9 kg; BMI: 32.0 ± 6.0 kg · m2) were randomly assigned to ten 1-min high-intensity intervals (90%VO2 peak, 1 min recovery) or five 2-min high-intensity intervals (80–100% VO2 peak, 1 min recovery) or control. Peak oxygen uptake (VO2 peak), peak power output (PPO), body composition and fasting blood lipids were evaluated before and after 3 weeks of training, completed 3 days per week. Results from ANCOVA analyses demonstrated no significant training group differences for any primary variables (P > 0.05). When training groups were collapsed, 1MIN and 2MIN resulted in a significant increase in PPO (?18.9 ± 8.5 watts; P = 0.014) and time to exhaustion (?55.1 ± 16.4 s; P = 0.001); non-significant increase in VO2 peak (?2.36 ± 1.34 ml · kg?1 · min?1; P = 0.185); and a significant decrease in fat mass (FM) (??1.96 ± 0.99 kg; P = 0.011). Short-term interval exercise training may be effective for decreasing FM and improving exercise tolerance in overweight and obese women.  相似文献   

18.
Abstract

Ten healthy, non-cycling trained males (age: 21.2 ± 2.2 years, body mass: 75.9 ± 13.4 kg, height: 178 ± 6 cm, [Vdot]O2PEAK: 46 ± 10 ml · kg?1 · min?1) performed a graded incremental exercise test, two familiarisation trials and six experimental trials. Experimental trials consisted of cycling to volitional exhaustion at 100%, 110% and 120% WPEAK, 60 min after ingesting either 0.3 g · kg?1 body mass sodium bicarbonate (NaHCO3) or 0.1 g · kg?1 body mass sodium chloride (placebo). NaHCO3 ingestion increased cycling capacity by 17% at 100% WPEAK (327 vs. 383 s; P = 0.02) although not at 110% WPEAK (249 vs. 254 s; P = 0.66) or 120% WPEAK (170 vs. 175 s; P = 0.60; placebo and NaHCO3 respectively). Heart rate (P = 0.02), blood lactate (P = 0.001), pH (P < 0.001), [HCO3 ?], (P < 0.001), and base excess (P < 0.001) were greater in all NaHCO3 trials. NaHCO3 attenuated localised ratings of perceived exertion (RPEL) to a greater extent than placebo only at 100% WPEAK (P < 0.02). Ratings of abdominal discomfort and gut fullness were mild but higher for NaHCO3. NaHCO3 ingestion significantly improves continuous constant load cycling at 100% WPEAK due to, in part, attenuation of RPEL.  相似文献   

19.
This investigation (i) examined changes in tear osmolarity in response to fluid loss that occurs with exercise in a field setting, and (ii) compared tear osmolarity with common field and laboratory hydration measures. Sixty-three participants [age 27.8 ± 8.4 years, body mass 72.15 ± 10.61 kg] completed a self-paced 10 km run outside on a predetermined course. Body mass, tear fluid, venous blood and urine samples were collected immediately before and after exercise. Significant (p < 0.001) reductions in body mass (1.71 ± 0.44%) and increases in tear osmolarity (8 ± 15 mOsm.L?1), plasma osmolality (7 ± 8 mOsm.kg?1), and urine specific gravity (0.0014 ± 0.0042 g.mL?1p = 0.008) were observed following exercise. Pre- to post-exercise change in tear osmolarity was not significantly correlated (all p > 0.05) with plasma osmolality (rs = 0.24), urine osmolality (rs = 0.14), urine specific gravity (rs = 0.13) or relative body mass loss (r = 0.20). Tear osmolarity is responsive to exercise-induced fluid loss but does not correlate with the changes observed using other common measures of hydration status in the field setting. Practitioners shouldn’t directly compare or replace other common hydration measures with tear osmolarity in the field.

Abbreviations: BML: Body Mass Loss; CV: Coefficient of Variation; Posm: Plasma osmolality; SD: Standard Deviation; Tosm: Tear Osmolarity; Uosm: Urine Osmolality; USG: Urine Specific Gravity; WBGT: Wet bulb globe thermometer  相似文献   

20.
Sweat lactate reflects eccrine gland metabolism. However, the metabolic tendencies of eccrine glands in a hot versus thermoneutral environment are not well understood. Sixteen male volunteers completed a maximal cycling trial and two 60-min cycling trials [30°C?=?30±1°C and 18°C?=?18±1°C wet bulb globe temperature (WBGT)]. The participants were requested to maintain a cadence of 60 rev?·?min?1 with the intensity individualized at ~ 90% of the ventilatory threshold. Sweat samples at 10, 20, 30, 40, 50 and 60?min were analysed for lactate concentration. Sweat rate at 30°C (1380±325?ml?·?h?1) was significantly greater (P<0.05) than at 18°C (632±311?ml?·?h?1). Sweat lactate concentration was significantly greater (P<0.05) at each time point during the 18°C trial, with values between trials tending to converge across time. During the 30°C trial, both heart rate (20, 30, 40, 50 and 60?min) and rectal temperature (30, 40, 50 and 60?min) were significantly higher than in the 18°C trial. Higher sweat lactate concentrations coupled with lower sweat rates may indicate a greater relative contribution of oxygen-independent metabolism within eccrine glands during exercise at 18°C. Decreases in sweat lactate concentration across time suggest either greater dilution due to greater sweat volume or increased reliance on aerobic metabolism within eccrine glands. The convergence of lactate concentrations between trials may indicate that time-dependent modifications in sweat gland metabolism occur at different rates contingent partially on environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号