首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The goal of this randomized, double-blind, cross-over study was to assess the acute effects of caffeine ingestion on muscular strength and power, muscular endurance, rate of perceived exertion (RPE), and pain perception (PP) in resistance-trained men. Seventeen volunteers (mean?±?SD: age?=?26?±?6 years, stature?=?182?±?9?cm, body mass?=?84?±?9?kg, resistance training experience?=?7?±?3 years) consumed placebo or 6?mg?kg?1 of anhydrous caffeine 1?h before testing. Muscular power was assessed with seated medicine ball throw and vertical jump exercises, muscular strength with one-repetition maximum (1RM) barbell back squat and bench press exercises, and muscular endurance with repetitions of back squat and bench press exercises (load corresponding to 60% of 1RM) to momentary muscular failure. RPE and PP were assessed immediately after the completion of the back squat and bench press exercises. Compared to placebo, caffeine intake enhanced 1RM back squat performance (+2.8%; effect size [ES]?=?0.19; p?=?.016), which was accompanied by a reduced RPE (+7%; ES?=?0.53; p?=?.037), and seated medicine ball throw performance (+4.3%, ES?=?0.32; p?=?.009). Improvements in 1RM bench press were not noted although there were significant (p?=?.029) decreases in PP related to this exercise when participants ingested caffeine. The results point to an acute benefit of caffeine intake in enhancing lower-body strength, likely due to a decrease in RPE; upper-, but not lower-body power; and no effects on muscular endurance, in resistance-trained men. Individuals competing in events in which strength and power are important performance-related factors may consider taking 6?mg?kg?1 of caffeine pre-training/competition for performance enhancement.  相似文献   

2.
3.
Abstract

This study analysed the effect of imposing a pause between the eccentric and concentric phases on the biological within-subject variation of velocity- and power–load isoinertial assessments. Seventeen resistance-trained athletes undertook a progressive loading test in the bench press (BP) and squat (SQ) exercises. Two trials at each load up to the one-repetition maximum (1RM) were performed using 2 techniques executed in random order: with (stop) and without (standard) a 2-s pause between the eccentric and concentric phases of each repetition. The stop technique resulted in a significantly lower coefficient of variation for the whole load–velocity relationship compared to the standard one, in both BP (2.9% vs. 4.1%; P = 0.02) and SQ (2.9% vs. 3.9%; P = 0.01). Test–retest intraclass correlation coefficients (ICCs) were r = 0.61–0.98 for the standard and r = 0.76–0.98 for the stop technique. Bland–Altman analysis showed that the error associated with the standard technique was 37.9% (BP) and 57.5% higher (SQ) than that associated with the stop technique. The biological within-subject variation is significantly reduced when a pause is imposed between the eccentric and concentric phases. Other relevant variables associated to the load–velocity and load–power relationships such as the contribution of the propulsive phase and the load that maximises power output remained basically unchanged.  相似文献   

4.
In this study we investigated if the occurrence of the sticking region was a result of diminishing potentiation (coinciding delayed muscle activation) or the result of a mechanically poor region in which the muscles can produce less force. A regular one-repetition maximum (1RM) free-weight bench press was compared with isometric bench presses performed at 12 different positions. A lower force at the sticking region compared to the other regions in the isometric bench presses would confirm the mechanically-poor-position hypothesis. Twelve resistance-trained males (age 21.7 ± 1.3 years, mass 78 ± 5.8 kg, height 1.81 ± 0.05 m) were tested in 1RM and in isometric contractions in bench press in 12 different positions, indicated by the vertical distance between barbell and sternum, covering the whole range of motion during the concentric phase. Barbell kinematics and muscle activity were registered. In both types of executions a region of lower force output was observed, which supports the mechanically-poor-position hypothesis. Electromyographic activity of four muscles showed the same pattern in the isometric and 1RM attempts. It was concluded that diminishing effect potentiation could not explain the existence of the sticking region.  相似文献   

5.
6.
This study determined whether backward grinding performance in America's Cup sailing could be improved using a training intervention to increase power capability in the upper-body pull movement. Fourteen elite male sailors (34.9 ± 5.9 years; 98.1 ± 14.4 kg; 186.6 ± 7.7 cm) were allocated into experimental (speed-focussed) and control groups. Grinding performance was assessed using a grinding ergometer and an instrumented Smith machine measured force, velocity and power during the bench pull exercise. Conventional training produced significant improvements in bench pull 1 RM (5.2 ± 4.0%; p = 0.016) and maximum force production (5.4 ± 4.0%; p = 0.014). Speed-focussed training improved maximum power (7.8 ± 4.9%; p = 0.009), power at 1RM (10.3 ± 8.9%; p = 0.019) and maximum velocity (8.4 ± 2.6%; p = 0.0002). Backward grinding performance showed greater improvements in the experimental group than the control group for moderate (+1.8%) and heavy load (+6.0%) grinding. Changes in maximum power output and power at 1 RM had large correlations (r = 0.56–0.61) with changes in both moderate and heavy load grinding performance. Time to peak force had the strongest relationship, explaining 70% of the change in heavy load grinding performance. Although the performance benefit was not entirely clear the likelihood of a detrimental effect was low ( < 5%) and therefore implementation could be recommended.  相似文献   

7.
Abstract

An analysis system for barbell weightlifting exercises is proposed to record reliable performance and neuromuscular responses. The system consists of surface electromyography (sEMG) synchronized with electrogoniometry and a barbell position transducer. The purpose of this study was to establish the reliability of the three components of the system. Nine males (age 28.9 ± 4.8 years, mass 85.7 ± 15.1 kg) performed squat exercise at three loads on three separate trial days. A data acquisition and software system processed maximal knee angle (flexion), mean power for the concentric phase of squat exercise, and normalized root mean square of the vastus lateralis. Inter-trial coefficients of variation for each variable were calculated as 5.3%, 7.8%, and 7.5% respectively. In addition, knee joint motion and barbell displacement were significantly related to each other (bar displacement (m) = 1.39–0.0057 × knee angle (degress), with goodness-of-fit value, r 2 = 0.817), suggesting knee goniometry alone can represent the kinematics of a multi-joint squat exercise. The proven reliability of the three components of this system allows for real-time monitoring of resistance exercise using the preferred training methods of athletes, which could be valuable in the understanding of the neuromuscular response of elite strength training methods.  相似文献   

8.
This study examined trunk muscle activation, balance and proprioception while squatting with a water-filled training tube (WT) and a traditional barbell (BB), with either closed (CE) or open eyes (OE). Eighteen male elite Gaelic footballers performed an isometric squat under the following conditions: BB-OE, BB-CE, WT-OE and WT-CE. The activity of rectus abdominis (RA), external oblique (EO) and multifidus (MF) was measured using electromyography, along with sway of the centre of pressure (CoP) using a force platform. Only the EO and the MF muscles exhibited an increased activity with WT (p < 0.01). In the medio-lateral direction both the velocity and range of the CoP increased significantly with WT (p < 0.01). Interestingly, the range of the CoP for the WT-CE condition was significantly lower than WT-OE (p < 0.05, d = 0.44), whilst the velocity of the CoP was marginally reduced (d = 0.29). WT elicited a greater level core muscle activation and created a greater challenge to postural stability when compared to a BB. It appears that WT does not benefit from vision but emphasises the somatosensory control of balance. The use of WT may be beneficial in those sports requiring development of somatosensory/proprioceptive contribution to balance control.  相似文献   

9.
The purpose of this study was to investigate the relationship between movement velocity and relative load in three lower limbs exercises commonly used to develop strength: leg press, full squat and half squat. The percentage of one repetition maximum (%1RM) has typically been used as the main parameter to control resistance training; however, more recent research has proposed movement velocity as an alternative. Fifteen participants performed a load progression with a range of loads until they reached their 1RM. Maximum instantaneous velocity (Vmax) and mean propulsive velocity (MPV) of the knee extension phase of each exercise were assessed. For all exercises, a strong relationship between Vmax and the %1RM was found: leg press (r2adj = 0.96; 95% CI for slope is [?0.0244, ?0.0258], P < 0.0001), full squat (r2adj = 0.94; 95% CI for slope is [?0.0144, ?0.0139], P < 0.0001) and half squat (r2adj = 0.97; 95% CI for slope is [?0.0135, ?0.00143], P < 0.0001); for MPV, leg press (r2adj = 0.96; 95% CI for slope is [?0.0169, ?0.0175], P < 0.0001, full squat (r2adj = 0.95; 95% CI for slope is [?0.0136, ?0.0128], P < 0.0001) and half squat (r2adj = 0.96; 95% CI for slope is [?0.0116, 0.0124], P < 0.0001). The 1RM was attained with a MPV and Vmax of 0.21 ± 0.06 m s?1 and 0.63 ± 0.15 m s?1, 0.29 ± 0.05 m s?1 and 0.89 ± 0.17 m s?1, 0.33 ± 0.05 m s?1 and 0.95 ± 0.13 m s?1 for leg press, full squat and half squat, respectively. Results indicate that it is possible to determine an exercise-specific %1RM by measuring movement velocity for that exercise.  相似文献   

10.
Foam rolling and eccentric exercise interventions have been demonstrated to improve range of motion (ROM). However, these two modalities have not been directly compared. Twenty-three academy soccer players (age: 18 ± 1; height: 1.74 ± 0.08 m; body mass: 69.3 ± 7.5 kg) were randomly allocated to either a foam rolling (FR) or eccentric exercise intervention designed to improve dorsiflexion ROM. Participants performed the intervention daily for a duration of four weeks. Measurements of dorsiflexion ROM, isometric plantar flexion torque and drop jump reactive strength index were taken at baseline (pre-intervention) and at three subsequent time-points (30-min post, 24-hours post and 4-weeks post). A significant time x group interaction effect was observed for dorsiflexion (P = 0.036), but not for torque or reactive strength index. For dorsiflexion, there was a significant increase in both acute (30-min; P < 0.001) and chronic (4-week; P < 0.001) ROM for the eccentric group, whilst FR exhibited only an acute improvement (P < 0.001). Eccentric training would appear a more efficacious modality than foam rolling for improving dorsiflexion ROM in elite academy soccer players.  相似文献   

11.
The purpose of this study was to compare force– and power–time curve variables during jumping between Division I strength-matched male and female basketball athletes. Males (n?=?8) and females (n?=?8) were strength matched by testing a one-repetition maximum (1RM) back squat. 1RM back squat values were normalised to body mass in order to demonstrate that strength differences were a function of body mass alone. Subjects performed three countermovement jumps (CMJ) at maximal effort. Absolute and relative force– and power–time curve variables from the CMJs were analysed between males and females. Average force– and power–time curves were generated for all subjects. Jump height was significantly greater (p?≤?.05) in males than females. Absolute force was higher in males during the concentric phase, but not significantly different (p?≥?.05) when normalised to body mass. Significance was found in absolute concentric impulse between sexes, but not when analysed relative to body mass. Rate of force development, rate of power development, relative peak force, and work were not significantly different between sexes. Males had significantly greater impulse during the eccentric phase as well as peak power (PP) during the concentric phase of the CMJ than did females in both absolute and relative terms. It is concluded that sex differences are not a determining factor in measured force during a CMJ when normalised to body mass between strength-matched subjects. However, eccentric phase impulse and concentric phase PP appear to be influenced by sex differences independent of matching strength levels.  相似文献   

12.
This study aimed to compare the load-velocity and load-power relationships of three common variations of the squat exercise. 52 strength-trained males performed a progressive loading test up to the one-repetition maximum (1RM) in the full (F-SQ), parallel (P-SQ) and half (H-SQ) squat, conducted in random order on separate days. Bar velocity and vertical force were measured by means of a linear velocity transducer time-synchronized with a force platform. The relative load that maximized power output (Pmax) was analyzed using three outcome measures: mean concentric (MP), mean propulsive (MPP) and peak power (PP), while also including or excluding body mass in force calculations. 1RM was significantly different between exercises. Load-velocity and load-power relationships were significantly different between the F-SQ, P-SQ and H-SQ variations. Close relationships (R2 = 0.92–0.96) between load (%1RM) and bar velocity were found and they were specific for each squat variation, with faster velocities the greater the squat depth. Unlike the F-SQ and P-SQ, no sticking region was observed for the H-SQ when lifting high loads. The Pmax corresponded to a broad load range and was greatly influenced by how force output is calculated (including or excluding body mass) as well as the exact outcome variable used (MP, MPP, PP).  相似文献   

13.
The purposes of this study were to analyse (a) if “angle-specific” (AS) flexor and extensor torques were different between ACL-reconstructed and uninvolved limbs, (b) the difference in peak torque occurrence angles for concentric and eccentric knee flexor and extensor torques between involved and uninvolved limbs and (c) if AS concentric and eccentric knee flexor and extensor torques are determinants of performance in the “single-leg hop test” (SLHT) and “vertical jump and reach test” (VJRT) in ACL-reconstructed legs. Twenty-seven male ACL-reconstructed volunteers were included in the study. Isokinetic knee muscle strength, SLHT and VJRT were performed 6 months after ACL reconstruction. No difference was found in extremity and knee joint angle interaction for concentric and eccentric flexor and extensor torques (p > 0.05). Peak torque occurrence angles were not different between involved and uninvolved limbs (p > 0.05). In involved extremities, concentric knee extensor strength at 90° was a determinant of SLHT performance (R2 = 0.403, p < 0.05), and concentric knee extensor strength at 60° was a determinant of VJRT (R2 = 0.224, p < 0.05). Assessment of AS concentric knee extensor strength at 60° and 90° might be important, because these were determinants of functional test performance.  相似文献   

14.
This study compared the muscular activation of the pectoralis major, anterior deltoid and triceps brachii during a free-weight barbell bench press performed at 0°, 30°, 45° and –15° bench angles. Fourteen healthy resistance trained males (age 21.4 ± 0.4 years) participated in this study. One set of six repetitions for each bench press conditions at 65% one repetition maximum were performed. Surface electromyography (sEMG) was utilised to examine the muscular activation of the selected muscles during the eccentric and concentric phases. In addition, each phase was subdivided into 25% contraction durations, resulting in four separate time points for comparison between bench conditions. The sEMG of upper pectoralis displayed no difference during any of the bench conditions when examining the complete concentric contraction, however differences during 26–50% contraction duration were found for both the 30° [122.5 ± 10.1% maximal voluntary isometric contraction (MVIC)] and 45° (124 ± 9.1% MVIC) bench condition, resulting in greater sEMG compared to horizontal (98.2 ± 5.4% MVIC) and –15 (96.1 ± 5.5% MVIC). The sEMG of lower pectoralis was greater during –15° (100.4 ± 5.7% MVIC), 30° (86.6 ± 4.8% MVIC) and horizontal (100.1 ± 5.2% MVIC) bench conditions compared to the 45° (71.9 ± 4.5% MVIC) for the whole concentric contraction. The results of this study support the use of a horizontal bench to achieve muscular activation of both the upper and lower heads of the pectoralis. However, a bench incline angle of 30° or 45° resulted in greater muscular activation during certain time points, suggesting that it is important to consider how muscular activation is affected at various time points when selecting bench press exercises.  相似文献   

15.
This study examined the influence of differing volume load and intensity (%1 repetition maximum[%1RM]) resistance exercise workouts on session rating of perceived exertion (sRPE) countermovement jump (CMJ) performance and endocrine responses. Twelve participants performed a workout comprising four exercises (bench press, back squat, deadlift and prone bench pull) in randomised order as either power (POW); 3 sets × 6 repetitions at 45%1RM × 3 min inter-set rest, strength (ST); 3 sets × 3 repetitions at 90%1RM × 3 min inter-set rest, or hypertrophy (HYP); 3 sets × 10 repetitions at 70%1RM × 1 min inter-set rest in a randomised-crossover design. CMJ performance and endocrine responses were measured immediately pre-, post-, 12, 24, 48 and 72 h post-exercise. POW sRPE (3.0 ± 1.0) was lower than ST (4.5 ± 1.0) (P = 0.01), and both were lower than HYP (8.5 ± 1.0) (P = 0.01). Duration of CMJ decrement was longer (P ≤ 0.05) for HYP (72 h) compared to POW (12 h) and ST (24 h). Testosterone concentration was greater (P ≤ 0.05) immediately post-exercise in HYP compared to POW and ST. In conclusion, less inter-set rest, greater volume load and intensity (%1RM) may increase sRPE, duration of CMJ performance decrement and testosterone responses in resistance exercise.  相似文献   

16.
The menstrual cycle (MC) phases carry to several psychophysiological alterations; however, no study has investigated the impact of MC phases on training load or technical training. In the present study, we investigated the effect of the follicular phase (FP), ovulatory phase (OP), and luteal phase (LP) on training load and technical training in young athletes. Twelve female athletes performed regular daily training sessions with the rating of perceived exertion (RPE) and duration being registered every session. Training impulse (TRIMP), monotony and strain were calculated. MC symptoms, RPE, and duration were also measured during technical training, which was carried out on a specific day during each phase. The TRIMP was not affected by MC phases during regular training (p > .05), but training monotony and strain were higher in FP compared to OP (p < .05). During the technical training, MC phases did not affect RPE (p > .05), but the session was longer in both FP and LP, compared to OP (p < .05). MC symptoms were exacerbated in FP compared to both OP and LP (p < .05). These findings suggest that MC disorders were elevated during FP, which indicate that monitoring MC phases might provide important feedbacks for programming training and expected results during competitions.  相似文献   

17.
Eccentric strength training is thought to be important for improving functional performance. A form of training that may enhance the eccentric training stimulus is the attachment of a rubber bungy to the strength-training apparatus in such a way that the return velocity and, therefore, the force required to decelerate the load at the end of the eccentric phase are increased. To determine the effects of elastic bungy training, we performed two studies. In the first, we examined the electromyographic (EMG) and kinematic characteristics of three different squat techniques: traditional squat, non-bungy jump squat and bungy jump squat. In the second study, we examined whether jump squat training with and without the attachment of a rubber bungy to an isoinertial supine squat machine affects muscle function, multidirectional agility, lunge ability and single leg jump performance. The EMG activity of the vastus lateralis and gastrocnemius muscles was recorded. An instrumented isoinertial supine squat machine was used to measure maximal strength and various force, velocity and power measures in both studies. Participants were randomly assigned to one of three groups: a control group and two weight-trained groups, one of which performed bungy squat jumps and one of which performed non-bungy squat jumps. The two experimental groups performed 10 weeks of ballistic weight training. The kinematic and EMG characteristics of the bungy and non-bungy squat techniques differed significantly from those of the traditional squat on all the variables measured. The only difference between the bungy squat and non-bungy squat training was greater EMG activity during the later stages (70-100%) of the eccentric phase of the bungy squat condition. The 10 weeks of bungy squat and non-bungy squat jump weight training were found to be equally effective in producing improvements in a variety of concentric strength and power measures (10.6-19.8%). These improvements did not transfer to improved performance for the single leg jump and multidirectional agility. However, bungy weight training did lead to a significant improvement in lunge performance (21.5%) compared with the other groups.  相似文献   

18.
Eccentric contractions that provide spring energy can also cause muscle damage. The aim of this study was to explore leg and vertical stiffness following muscle damage induced by an eccentric exercise protocol. Twenty active males completed 60 minutes of backward-walking on a treadmill at 0.67 m/s and a gradient of ? 8.5° to induce muscle damage. Tests were performed immediately before; immediately post; and 24, 48, and 168 hours post eccentric exercise. Tests included running at 3.35 m/s and hopping at 2.2 Hz using single- and double-legged actions. Leg and vertical stiffness were measured from kinetic and kinematic data, and electromyography (EMG) of five muscles of the preferred limb were recorded during hopping. Increases in pain scores (over 37%) occurred post-exercise and 24 and 48 hours later (p < 0.001). A 7% decrease in maximal voluntary contraction occurred immediately post-exercise (p = 0.019). Changes in knee kinematics during single-legged hopping were observed 168 hours post (p < 0.05). No significant changes were observed in EMG, creatine kinase activity, leg, or vertical stiffness. Results indicate that knee mechanics may be altered to maintain consistent levels of leg and vertical stiffness when eccentric exercise-induced muscle damage is present in the lower legs.  相似文献   

19.
Abstract

The aim of the study was to examine the sticking region and concomitant neuromuscular activation of the prime movers during six-repetition maximum (RM) bench pressing. We hypothesised that both peak velocities would decrease and that the electromyography (EMG) of the prime movers (deltoid, major pectoralis and triceps) would increase during the pre-sticking and sticking region during the six repetitions due to fatigue. Thirteen resistance-trained males (age 22.8 ± 2.2 years, stature 1.82 ± 0.06 m, body mass 83.4 ± 7.6 kg) performed 6-RM bench presses. Barbell kinematics and EMG activity of pectoralis major, deltoid anterior, and triceps brachii during the pre-, sticking and post-sticking region of each repetition in a 6-RM bench press were analysed. For both the sticking as the post-sticking region, the time increased significantly from the first to the sixth repetition. Vertical barbell height at the start of sticking region was lower, while the height at the end of the sticking region and post-sticking region did not change during the six repetitions. It was concluded that in 6-RM bench pressing performance, the sticking region is a poor mechanical force region due to the unchanged barbell height at the end of the sticking region. Furthermore, when fatigue occurs, the pectoralis and the deltoid muscles are responsible for surpassing the sticking region as indicated by their increased activity during the pre- and sticking region during the six-repetitions bench press.  相似文献   

20.
The purpose of this study was to investigate whether using different focus affects electromyographic (EMG) amplitude and contraction duration during bench press performed at explosive and controlled speeds. Eighteen young male individuals were familiarized with the procedure and performed the one-maximum repetition (1RM) test in the first session. In the second session, participants performed the bench press exercise at 50% of the 1RM with 3 different attentional focuses (regular focus on moving the load vs contracting the pectoralis vs contracting the triceps) at 2 speed conditions (controlled vs maximal speed). During the controlled speed condition, focusing on using either the pectoralis or the triceps muscles increased pectoralis normalized EMG (nEMG) by 6% (95% CI 3–8%; p = 0.0001) and 4% nEMG (95% CI 1–7%; p = 0.0096), respectively, compared with the regular focus condition. Triceps activity was increased by 4% nEMG (95% CI 0–7%; p = 0.0308) at the controlled speed condition during the triceps focus. During the explosive speed condition, the use of different focuses had no effect. The different attentional focus resulted in comparable contraction duration for the measured muscles when the exercise was performed explosively. Using internal focus to increase EMG amplitude seems to function only during conditions of controlled speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号