首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 675 毫秒
1.
为了探寻女子羽毛球运动员后场击球后单脚落地对膝关节前十字韧带损伤的影响,通过比较正手、反手场区头顶击球单脚落地时躯干加速度及运动变量的差异,寻求运动风险的变量因素。10名优秀女子羽毛球运动员穿戴三维加速计进行单打比赛,使用同步摄像机记录产生超过4g加速度的时刻,分析了加速度>4g时着陆点躯干倾斜角和髋关节外展角。结果显示:在头顶击球过程中,正手场区和反手场区的躯干侧弯及躯干加速度存在差异,反手区头顶击球时横向加速度大于正手区(P<0.05,es=0.706);反手场区单脚落地时躯干倾斜角(24°±7°)大于正手侧(17°±13°);正反手两侧躯干倾斜角均大于先前报道的受伤角度,反手侧的髋外展角(23°±11°)大于正手侧的髋外展角(-1°±8°);反手场区的3个轴的加速度与躯干侧弯、髋外展角度均呈显著相关性。反手场区头顶击球后,单脚落地姿势与前交叉韧带损伤的落地姿势相似,反手侧躯干过度侧弯和高风险落地姿势可能与羽毛球比赛中膝关节前十字韧带损伤有关。  相似文献   

2.
Anterior cruciate ligament (ACL) injury prevention programmes have not been as successful at reducing injury rates in women’s basketball as in soccer. This randomised controlled trial (ClinicalTrials.gov #NCT02530333) compared biomechanical adaptations in basketball and soccer players during jump-landing activities after an ACL injury prevention programme. Eighty-seven athletes were cluster randomised into intervention (6-week programme) and control groups. Three-dimensional biomechanical analyses of drop vertical jump (DVJ), double- (SAG-DL) and single-leg (SAG-SL) sagittal, and double- (FRONT-DL) and single-leg (FRONT-SL) frontal plane jump landing tasks were tested before and after the intervention. Peak angles, excursions, and joint moments were analysed using two-way MANCOVAs of post-test scores while controlling for pre-test scores. During SAG-SL the basketball intervention group exhibited increased peak knee abduction angles (= .004) and excursions (= .003) compared to the basketball control group (= .01) and soccer intervention group (= .01). During FRONT-SL, the basketball intervention group exhibited greater knee flexion excursion after training than the control group (= .01), but not the soccer intervention group (= .11). Although women’s soccer players exhibit greater improvements in knee abduction kinematics than basketball players, these athletes largely exhibit similar biomechanical adaptations to ACL injury prevention programmes.  相似文献   

3.
In lateral reactive movements, core stability may influence knee and hip joint kinematics and kinetics. Insufficient core stabilisation is discussed as a major risk factor for anterior cruciate ligament (ACL) injuries. Due to the higher probability of ACL injuries in women, this study concentrates on how gender influences trunk, pelvis and leg kinematics during lateral reactive jumps (LRJs). Perturbations were investigated in 12 men and 12 women performing LRJs under three different landing conditions: a movable landing platform was programmed to slide, resist or counteract upon landing. Potential group effects on three-dimensional trunk, pelvic, hip and knee kinematics were analysed for initial contact (IC) and the time of peak pelvic medial tilt (PPT). Regardless of landing conditions, the joint excursions in the entire lower limb joints were gender-specific. Women exhibited higher trunk left axial rotation at PPT (women: 4.0 ± 7.5°, men: ?3.1 ± 8.2°; p = 0.011) and higher hip external rotation at both IC and PPT (p < 0.01). But women demonstrated higher knee abduction compared to men. Men demonstrated more medial pelvic tilt at IC and especially PPT (men: –5.8 ± 4.9°, women: 0.3 ± 6.3°; p = 0.015). Strategies for maintaining trunk, pelvis and lower limb alignment during lateral reactive movements were gender-specific; the trunk and hip rotations displayed by the women were associated with the higher knee abduction amplitudes and therefore might reflect a movement strategy which is associated with higher injury risk. However, training interventions are needed to fully understand how gender-specific core stability strategies are related to performance and knee injury.  相似文献   

4.
ABSTRACT

Female volleyball athletes incorporate dynamic and static stretching into a warm-up, with evidence generally supporting dynamic stretching to improve performance. However, the effects of these stretching practices on injury risk during subsequent volleyball manoeuvres have yet to be fully elucidated in the warm-up literature. Three-dimensional kinematic data associated with non-contact, lower extremity injury were recorded on 12 female collegiate club volleyball athletes during unilateral landing tasks on the dominant and non-dominant limb. Participants performed landings as part of a volleyball-simulated manoeuvre prior to and post-dynamic (DWU) and combined dynamic-static (CDS) warm-ups. A significant reduction in non-dominant hip adduction angle was found at 15 min post CDS warm-up (= 0.016; = 0.38), however, no other warm-up differences were detected. The non-dominant limb demonstrated greater knee abduction (= 0.006; = 0.69) and internal rotation angle (= 0.004; = 0.88), suggesting that this limb demonstrates more risky landing patterns that are potentially due to altered trunk positioning upon landing. The results show that the majority of selected landing kinematics are unaffected by additional static stretching to a dynamic warm-up and that the non-dominant limb may be at a higher injury risk in female volleyball athletes.  相似文献   

5.
Abstract

This study aimed to elucidate the movements requiring greater trunk accelerations and its frequencies during badminton games, and compare the acceleration components among such movements. Trunk acceleration was measured using a triaxial accelerometer during badminton games. The moments that generated >4 G resultant acceleration were extracted, and movements consistent with the extracted moments were identified. We calculated the extracted movement ratio and frequency and compared the resultant, mediolateral, vertical and anteroposterior accelerations between the top five extracted movements. There were 1,342 movements that generated >4 G [mean, 7.72 (95% confidence interval, 7.31–8.14) cases/min]. The top five movements were lunging during underhand strokes with the dominant hand side leg, landing after overhand strokes on the dominant and non-dominant hand side leg, and cutting from a split step using the dominant and non-dominant hand side leg. Landing on the dominant hand side leg had a greater resultant acceleration than the other movements and had the greatest impact during the badminton game. Lunging during underhand strokes on the dominant hand side leg had greater mediolateral acceleration than the other movements. These results reflected the properties of badminton.  相似文献   

6.
ABSTRACT

Field-based screening methods have a limited capacity to identify high-risk postures during netball-specific landings associated with anterior cruciate ligament (ACL) injuries. This study determined the biomechanical relationship between a single-leg squat and netball-specific leap landing, to examine the utility of including a single-leg squat within netball-specific ACL injury risk screening. Thirty-two female netballers performed single-leg squat and netball-specific leap landing tasks, during which three-dimensional (3D) kinematic/kinetic data were collected. One-dimensional statistical parametric mapping examined relationships between kinematics from the single-leg squat, and the 3D joint rotation and moment data from leap landings. Participants displaying reduced hip external rotation, reduced knee flexion, and greater knee abduction and knee internal rotation angles during the single-leg squat exhibited these same biomechanical characteristics during the leap landing (p < 0.001). Greater ankle dorsiflexion during the single-leg squat was associated with greater knee flexion during landing (p < 0.001). Ankle eversion during the single-leg squat was associated with frontal and transverse plane knee biomechanics during landing (p < 0.001). Biomechanics from the single-leg squat were associated with landing strategies linked to ACL loading or injury risk, and thus may be a useful movement screen for identifying netball players who exhibit biomechanical deficits during landing.  相似文献   

7.
ABSTRACT

Knee joint coordination during jump landing in different directions is an important consideration for injury prevention. The aim of the current study was to investigate knee and hip kinematics on the non-dominant and dominant limbs during landing. A total of 19 female volleyball athletes performed single-leg jump-landing tests in four directions; forward (0°), diagonal (30° and 60°) and lateral (90°) directions. Kinematic and ground reaction force data were collected using a 10-camera Vicon system and an AMTI force plate. Knee and hip joint angles, and knee angular velocities were calculated using a lower extremity model in Visual3D. A two factor repeated measures ANOVA was performed to explore limb dominance and jump direction. Significant differences were seen between the jump directions for; angular velocity at initial contact (p < 0.001), angular velocity at peak vertical ground reaction force (p < 0.001), and knee flexion excursion (p = 0.016). Knee coordination was observed to be poorer in the early phase of velocity-angle plot during landing in lateral direction compared to forward and diagonal directions. The non-dominant limb seemed to have better coordination than the dominant limb during multi-direction jump landing. Therefore, dominant limbs appear to be at a higher injury risk than non-dominant limbs.  相似文献   

8.
ABSTRACT

The purpose was to quantify the effects of mid-flight whole-body and trunk rotation on knee mechanics in a double-leg landing. Eighteen male and 20 female participants completed a jump-landing-jump task in five conditions: no rotation, testing leg ipsilateral or contralateral (WBRC) to the whole-body rotation direction, and testing leg ipsilateral (TRI) or contralateral to the trunk rotation direction. The WBRC and TRI conditions demonstrated decreased knee flexion and increased knee abduction angles at initial contact (2.6 > Cohen’s dz > 0.3) and increased peak vertical ground reaction forces and knee adduction moments during the 100 ms after landing (1.7 > Cohen’s dz > 0.3). The TRI condition also showed the greatest knee internal rotation angles at initial contact and peak knee abduction and internal rotation angles and peak knee extension moments during the 100 ms after landing (2.0 > Cohen’s dz > 0.5). Whole-body rotation increased contralateral knee loading because of its primary role in decelerating medial-lateral velocities. Trunk rotation resulted in the greatest knee loading for the ipsilateral knee due to weight shifting and mechanical coupling between the trunk and lower extremities. These findings may help understand altered trunk motion in anterior cruciate ligament injuries.  相似文献   

9.
Although landing in a plantarflexion and inversion position is a well-known characteristic of lateral ankle sprains, the associated kinematics of the knee and hip is largely unknown. Therefore, the purpose of this study was to examine the changes in knee and hip kinematics during landings on an altered landing surface of combined plantarflexion and inversion. Participants performed five drop landings from 30 cm onto a trapdoor platform in three different conditions: flat landing surface, 25° inversion, or a combined 25° plantarflexion and 25° inversion. Kinematic data were collected using a seven camera motion capture system. A 2 × 3 (leg × surface) repeated measures ANOVA was used for statistical analysis. The combined surface showed decreased knee and hip flexion range of motion (ROM) and increased knee abduction ROM (p < 0.05). The altered landing surface creates a stiff landing pattern where reductions in sagittal plane motion are transferred to the frontal plane, resulting in increased knee abduction. A stiff landing pattern is frequently related to increased risk of anterior cruciate ligament injury. It may be beneficial for athletes at risk to train for alternate methods of increasing their sagittal plane motion of the knee and hip with active knee or trunk flexion.  相似文献   

10.
Abstract

Anticipatory postural adjustments (APAs), i.e. preparatory positioning of the head, the trunk and the foot, are essential to initiate cutting manoeuvres during football games. The aim of the present study was to determine how APA strategies during cutting manoeuvres are influenced by a reduction of the time available to prepare the movement.

Thirteen football players performed different cutting tasks, with directions of cutting either known prior to the task or indicated by a light signal occurring 850, 600 or 500 ms before ground contact.

With less time available to prepare the cutting manoeuvre, the head was less orientated towards the cutting direction (P = 0.033) and the trunk was even more rotated in the opposite direction (P = 0.002), while the foot placement was not significantly influenced. Moreover, the induced higher lateral trunk flexion correlated with the increased knee abduction moment (r = 0.41; P = 0.009).

Increasing lateral trunk flexion is the main strategy used to successfully perform a cutting manoeuvre when less time is available to prepare the movement. However, higher lateral trunk flexion was associated with an increased knee abduction moment and therefore an increased knee injury risk. Reducing lateral trunk flexion during cutting manoeuvres should be part of training programs seeking the optimisation of APAs.  相似文献   

11.
ABSTRACT

The objective of this study was to analyse the effect of the use of social networks in smartphones or playing video games on the passing decision-making performance in professional soccer athletes. Participants were 25 male professional soccer athletes (mean ± SD: age 23.4 ± 2.8 years). The participants performed three randomised conditions divided into three groups: control (CON), smartphone (SMA), and video game (VID). Before and after each experimental condition, the Stroop Task assessed the level of induced mental fatigue. Then, the athletes performed a simulated soccer match. A CANON® camera recorded the matches for further analysis on passing decision-making performance. A group effect was identified (< .01) with impairment on passing decision-making performance for the SMA (p = .01, ES = 0.5) and VID (p = .01, ES = 0.5) conditions. We concluded that the use of social networks on smartphones and/or playing video games right before official soccer matches might impair the passing decision-making performance in professional soccer athletes.  相似文献   

12.
ABSTRACT

This study identified the effect of badminton lunging directions on impact characteristics, joint kinetics and measurement reliability. A total of 14 badminton players performed 20 lunges in both forehand and backhand sides. Ground reaction force (GRF) and three-dimensional joint moment variables were determined for further analyses. Paired t-tests and Wilcoxon signed-rank tests were performed to determine any differences between the two lunge directions and intra-class correlation (ICC) and sequential averaging analysis (SAA) were used to estimate the minimum number of trials. Compared to the forehand side, participants experienced significantly larger total GRF impulse (+ 3.8%, = 0.021) and transverse moment (hip + 63.5%, < 0.001; knee + 80.7%, = 0.011), but smaller hip (?7.7%), knee (?18.7%) and ankle frontal moments (?58.0%, < 0.05) in backhand lunges. The minimum number of trials was similar for both lunge directions, as the averaged absolute differences was less than one in both ICC and SAA. Furthermore, smaller minimal number of trials was determined by the ICC (7.9–8.0), compared with the SAA approach (9.5–10.3). Lunge direction would influence GRF and joint loading, but not on the measurement reliability. These results give important insights to establish performance or equipment evaluation protocols during badminton lunges.  相似文献   

13.
Increased lateral trunk bending to the injured side has been observed when ACL injuries occur. The purpose was to quantify the effect of mid-flight lateral trunk bending on center of mass (COM) positions and subsequent landing mechanics during a jump-landing task. Forty-one recreational athletes performed a jump-landing task with or without mid-flight lateral trunk bending. When the left and right trunk bending conditions were compared with the no trunk bending condition, participants moved the COM of the upper body to the bending direction, while the COM of the pelvis, ipsilateral leg, and contralateral leg moved away from the bending direction relative to the whole body COM. Participants demonstrated increased peak vertical ground reaction forces (VGRF) and knee valgus and internal rotation angles at peak VGRF for the ipsilateral leg, but decreased peak VGRF and knee internal rotation angles at peak VGRF and increased knee varus angles at peak VGRF for the contralateral leg. Mid-flight lateral trunk resulted in an asymmetric landing pattern associated with increased ACL loading for the ipsilateral leg. The findings may help to understand altered trunk motion during ACL injury events and the discrepancy in ACL injuries related to limb dominance in badminton and volleyball.  相似文献   

14.
Abstract

Knee injuries such as anterior cruciate ligament lesions and patellar tendonitis are very frequent in volleyball, and are often attributed to micro traumas that occur during the landing phase of airborne actions. The aim of the present study was to compare different jumping activities during official men's and women's volleyball games. Twelve top-level matches from the Italian men's and women's professional leagues were analysed. The jumps performed during the games were classified according to the landing technique used by the player (left or right foot or both feet together), court position, and ball trajectory. Chi-square analyses were performed to detect differences in landing techniques between the sexes, court positions, and trajectories when serving, attacking, blocking, and setting. Significant differences (P < 0.05) were found between the sexes for block, set, and spike but not for the jump serve. The frequency of landings on one foot was related to court position and the trajectory of the sets: when spiking faster sets, the players were more likely to use a one-footed landing. The present results should help coaches and physiotherapists to devise appropriate training and prevention programmes, and reveal the need for further detailed biomechanical investigations of the relationships between landings and knee injuries.  相似文献   

15.
ABSTRACT

Ankle sprains are the most common injury in regular badminton players and usually occur at the end of a match or training. The purpose of the present study was to examine the influence of fatigue produced by badminton practice on the lower limb biomechanics of badminton players. It was hypothesized that fatigue induces ankle kinematic and lower leg muscle activity changes which may increase the risk of ankle sprain. Ankle kinematics, ankle kinetics and muscles activities of 17 regular badminton players were recorded during lateral jumps before and after an intense badminton practice session. Post-fatigue, ankle inversion at foot strike and peak ankle inversion increased (+2.6°, p = 0.003 and +2.5°, p = 0.005, respectively). EMG pre-activation within 100 ms before foot landing significantly decreased after fatigue for soleus (?23.4%, p = 0.031), gastrocnemius lateralis (?12.2%, p = 0.035), gastrocnemius medialis (?23.3%, p = 0.047) and peroneus brevis (?17.4%, p = 0.036). These results demonstrate impaired biomechanics of badminton players when fatigue increases, which may cause a greater risk of experiencing an ankle sprain injury.  相似文献   

16.
This study presents the kinematics and plantar pressure characteristics of eight elite national-level badminton athletes and eight recreational college-level badminton players while performing a right-forward lunge movement in a laboratory-simulated badminton court. The hypothesis was that recreational players would be significantly different from elite players in kinematics and plantar pressure measures. Vicon® motion capture and Novel® insole plantar pressure measurement were simultaneously taken to record the lower extremity kinematics and foot loading during stance. Recreational players showed significantly higher peak pressure in the lateral forefoot (P = 0.002) and force time integral in the lateral forefoot (P = 0.013) and other toes (P = 0.005). Elite athletes showed higher peak pressure in the medial forefoot (P = 0.003), hallux (P = 0.037) and force time integral in the medial forefoot (P = 0.009). The difference in landing techniques for the lunge step between elite athletes and recreational players was observed with peak ankle eversion (?38.2°±2.4° for athletes and ?11.1°±3.9° for players, P = 0.015); smaller knee range of motion in the coronal and transverse planes, with differences in peak knee adduction (28.9°±6.8° for athletes and 15.7°±6.2° for players, P = 0.031); peak knee internal rotation (20.3°±1.3° for athletes and 11.8°±3.2° for players, P = 0.029) and peak hip flexion (77.3°±4.1° for athletes and 91.3°±9.3° for players, P = 0.037).  相似文献   

17.
This study aimed to clarify the differences between the horizontal single-leg rebound jump (HJ) and vertical single-leg rebound jump (VJ) in terms of three-dimensional joint kinetics for the take-off leg, while focusing on frontal and transverse plane movements. Eleven male track and field athletes performed HJ and VJ. Kinematic and kinetic data were calculated using data recorded with a motion capture system and force platforms. The hip abduction torque, trunk lateral flexion torque (flexion for the swing-leg side), hip external and internal torque, trunk rotational torque, and the powers associated with these torques were larger when performing HJ because of resistance to the impact ground reaction force and because of pelvic and posture control. Pelvic rotation was noted in HJ, and this was controlled not only by the hip and trunk joint torque from the transverse plane but also by the hip abduction torque. Therefore, hip and trunk joint kinetics in the frontal and transverse plane play an important role in a single-leg jump, regardless of the jumping direction, and may also play a more important role in HJ than in VJ.  相似文献   

18.
The purpose of this study was to examine the effects of short-term Rhodiola Rosea (Golden Root Extract (GRE)) supplementation on repeated Wingate performance. Eleven physically active college aged females were recruited for this study. In a within groups counterbalanced study design, participants were supplemented with either 1,500 mg/day of GRE or placebo (gluten-free cornstarch) for 3 days. Participants also took an additional 500 mg dose of corresponding treatment 30 minutes prior to testing of each trial. During each exercise trial, participants completed 3 × 15-second Wingate Anaerobic Tests (WAnTs) separated by 2-minute active recovery periods. Each exercise trial was separated by a 7 day washout period. Over the 3 × 15-second WAnTs, mean watts (p = 0.017, ES = 0.55), mean anaerobic capacity (p = 0.025, ES = 0.96), mean anaerobic power (p = 0.03, ES = 1.07), mean peak watts (p = 0.029,ES = 0.46), and mean total work (p = 0.017, ES = 0.49) were higher in the GRE treatment trial versus placebo. However, mean fatigue index (p = 0.094, ES = 0.39) was unaffected regardless of treatment. Our results show that GRE supplementation enhanced anaerobic exercise performance as measured through repeated WAnTs. GRE may possess ergogenic benefits and findings hold important implications for boosting anaerobic performance in repeated anaerobic bouts of exercise.  相似文献   

19.
Despite an increase in anterior knee laxity (AKL) during the adolescent growth spurt in girls, it is unknown whether landing biomechanics are affected by this change. This study investigated whether pubescent girls with higher AKL displayed differences in their lower limb strength or landing biomechanics when performing a horizontal leap movement compared to girls with lower AKL. Forty-six pubescent girls (10–13 years) were tested at the time of their peak height velocity (PHV). Passive AKL was quantified and used to classify participants into higher (HAKL; peak displacement > 4 mm) and lower (LAKL; peak displacement < 3 mm) AKL groups (n = 15/group). Three-dimensional kinematics, ground reaction forces (GRF) and muscle activation patterns were assessed during a horizontal leap landing. HAKL participants displayed significantly (P < 0.05) reduced hip abduction, increased hip abduction moments, as well as earlier hamstring muscle and later tibialis anterior activation compared to LAKL participants. Girls with HAKL displayed compensatory landing biomechanics, which are suggested to assist the functional stability of their knees during this dynamic task. Further research is warranted, however, to confirm or refute this notion.  相似文献   

20.
The purpose of this study was to determine the kinematic patterns that maximized the vertical force produced during the water polo eggbeater kick. Twelve water polo players were tested executing the eggbeater kick with the trunk aligned vertically and with the upper limbs above water while trying to maintain as high a position as possible out of the water for nine eggbeater kick cycles. Lower limb joint angular kinematics, pitch angles and speed of the feet were calculated. The vertical force produced during the eggbeater kick cycle was calculated using inverse dynamics for the independent lower body segments and combined upper body segments, and a participant-specific second-degree regression equation for the weight and buoyancy contributions. Vertical force normalized to body weight was associated with hip flexion (average, r = 0.691; maximum, r = 0.791; range of motion, r = 0.710), hip abduction (maximum, r = 0.654), knee flexion (average, r = 0.716; minimum, r = 0.653) and knee flexion-extension angular velocity (r = 0.758). Effective orientation of the hips resulted in fast horizontal motion of the feet with positive pitch angles. Vertical motion of the feet was negatively associated with vertical force. A multiple regression model comprising the non-collinear variables of maximum hip abduction, hip flexion range of motion and knee flexion angular velocity accounted for 81% of the variance in normalized vertical force. For high performance in the water polo, eggbeater kick players should execute fast horizontal motion with the feet by having large abduction and flexion of the hips, and fast extension and flexion of the knees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号