首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-five volleyball players (14 males, 11 females) were videotaped (60Hz) performing countermovement vertical jumps with and without an arm swing. Ground reaction force and video-based coordinate data were collected simultaneously. The resultant joint force and torque at the hip, knee, ankle and shoulder for two trials per subject per condition were computed and normalized. Average kinematic, resultant joint force and torque data were compared using repeated-measures analysis of variance. Larger values were recorded for the vertical velocity of the centre of mass at take-off in the jumps with (mean 2.75, s=0.3m.s-1) versus without (mean 2.44, s= 0.23m.s-1) an arm swing. The jumps with no arm swing produced larger torques at the hip during the first third of the propulsive phase (from zero to maximum vertical velocity of the centre of mass). During the final two-thirds of the propulsive phase, the arm swing augmented hip extensor torques by slowing the rate of trunk extension and placing the hip extensor muscles in slower concentric conditions that favoured the generation of larger forces and resultant joint torques. During the first two-thirds ofthe propulsive phase, knee extensor torque increased by 28% in the jumps with an arm swing, but maintained a relatively constant magnitude in the jumps with no arm swing.  相似文献   

2.
Twenty-five volleyball players (14 males, 11 females) were videotaped (60 Hz) performing countermovement vertical jumps with and without an arm swing. Ground reaction force and video-based coordinate data were collected simultaneously. The resultant joint force and torque at the hip, knee, ankle and shoulder for two trials per subject per condition were computed and normalized. Average kinematic, resultant joint force and torque data were compared using repeated-measures analysis of variance. Larger values were recorded for the vertical velocity of the centre of mass at take-off in the jumps with (mean 2.75, s = 0.3 m.s-1) versus without (mean 2.44, s = 0.23 m.s-1) an arm swing. The jumps with no arm swing produced larger torques at the hip during the first third of the propulsive phase (from zero to maximum vertical velocity of the centre of mass). During the final two-thirds of the propulsive phase, the arm swing augmented hip extensor torques by slowing the rate of trunk extension and placing the hip extensor muscles in slower concentric conditions that favoured the generation of larger forces and resultant joint torques. During the first two-thirds of the propulsive phase, knee extensor torque increased by 28% in the jumps with an arm swing, but maintained a relatively constant magnitude in the jumps with no arm swing.  相似文献   

3.
ABSTRACT

Chronic foot and ankle injuries are common in dancers; understanding how lower extremity loading changes in response to altered task goals can be beneficial for rehabilitation and injury prevention strategies. The purpose of this study was to examine mechanical demands during jump take-offs when the task goal was modified to focus on either increasing jump distance or increasing jump height. It was hypothesized that a jump strategy focused on height would result in decreased energetic demands on the foot and ankle joints. Thirty healthy, experienced female dancers performed saut de chat leaps while travelling as far as possible (FAR) or jumping as high as possible (UP). Ground reaction force (GRF) impulses and peak sagittal plane net joint moments and sagittal plane mechanical energy expenditure (MEE) of the metatarsophalangeal (MTP), ankle, knee, and hip joints were calculated. During take-off, vertical and horizontal braking GRF impulses were greater and horizontal propulsive GRF impulse was lower in the UP condition. MEE at the MTP, ankle, and hip joints was lower in UP, and MEE at the knee was higher in UP. These results suggest that a strategy focused on height may be helpful in unloading the ankle and MTP joints during dance leaps.  相似文献   

4.
Abstract

This study analysed the first stance phase joint kinetics of three elite sprinters to improve the understanding of technique and investigate how individual differences in technique could influence the resulting levels of performance. Force (1000 Hz) and video (200 Hz) data were collected and resultant moments, power and work at the stance leg metatarsal-phalangeal (MTP), ankle, knee and hip joints were calculated. The MTP and ankle joints both exhibited resultant plantarflexor moments throughout stance. Whilst the ankle joint generated up to four times more energy than it absorbed, the MTP joint was primarily an energy absorber. Knee extensor resultant moments and power were produced throughout the majority of stance, and the best-performing sprinter generated double and four times the amount of knee joint energy compared to the other two sprinters. The hip joint extended throughout stance. Positive hip extensor energy was generated during early stance before energy was absorbed at the hip as the resultant moment became flexor-dominant towards toe-off. The generation of energy at the ankle appears to be of greater importance than in later phases of a sprint, whilst knee joint energy generation may be vital for early acceleration and is potentially facilitated by favourable kinematics at touchdown.  相似文献   

5.
To determine the contributions of the motions of the body segments to the vertical ground reaction force (Fz), the joint torques produced by the leg muscles, and the time course of vertical velocity generation during a vertical jump, 15 men were videotaped performing countermovement vertical jumps from a force plate with and without an arm swing. Linear kinematic, Fz, and joint torque data were computed and compared using repeated measures analysis of variance. Maximum jump height was significantly larger in the arm swing jumps compared to the no arm swing jumps and was due to both a higher height of the center of mass (CM) at takeoff (54%) and a larger vertical velocity of the CM at takeoff (46%). The net vertical impulse created during the propulsive phase of the arm swing jumps was greater due to a trend of an increased duration (0.021 s) of the propulsive phase and not to larger average values of Fz. In the arm swing jumps, the arm motion resulted in the arms making a larger maximal contribution to Fz during the middle of the propulsive phase and decreased the negative contribution of the trunk-head and thigh to Fz late in the propulsive phase. Last, the arm swing decreased the extensor torques at the hip (13%), knee (10%), and ankle (10%) early in the propulsive phase but augmented these same extensor torques later in the propulsive phase.  相似文献   

6.
The aim of this study was to relate the contribution of lower limb joint moments and individual muscle forces to the body centre of mass (COM) vertical and horizontal acceleration during the initial two steps of sprint running. Start performance of seven well-trained sprinters was recorded using an optoelectronic motion analysis system and two force plates. Participant-specific torque-driven and muscle-driven simulations were conducted in OpenSim to quantify, respectively, the contributions of the individual joints and muscles to body propulsion and lift. The ankle is the major contributor to both actions during the first two stances, with an even larger contribution in the second compared to the first stance. Biarticular gastrocnemius is the main muscle contributor to propulsion in the second stance. The contribution of the hip and knee depends highly on the position of the athlete: During the first stance, where the athlete runs in a forward bending position, the knee contributes primarily to body lift and the hip contributes to propulsion and body lift. In conclusion, a small increase in ankle power generation seems to affect the body COM acceleration, whereas increases in hip and knee power generation tend to affect acceleration less.  相似文献   

7.
Abstract

Cinematographic records were taken of the vertical and standing broad jumps, and strength measurements made of the isometric extensor strength of the hip, knee, and ankle joints for eighteen men and eleven women. A comparison of range of motion of joint actions and maximal angular velocities for men and women indicated distinct time-force coordinations of the various joint actions in the performance of the vertical and standing broad jumps. No general relationship nor pattern of relationships was found between isometric extensor strength and maximal angular velocity.  相似文献   

8.
In this study, we measured the vertical and horizontal take-off forces, plantar pressures and activation patterns of four muscles (vastus lateralis, gluteus maximus, tibialis anterior, gastrocnemius) in 10 ski jumpers in simulated laboratory conditions when wearing either training shoes or ski jumping boots. We found significant differences in vertical ( P ? 0.001), horizontal ( P ? 0.05) and resultant ( P ? 0.001) take-off velocities and vertical force impulse ( P ? 0.01). We found no significant differences in the jumpers' initial take-off positions; however, the jumping boots condition resulted in a smaller displacement in the final position of the following joint angles: ankle angle ( P ? 0.001), knee angle ( P ? 0.001), hip angle ( P ? 0.01) and shank angle relative to the horizontal ( P ? 0.01). This corresponds with less electromyographic activity during take-off in both the gastrocnemius (300 to 200 ms and 200 to 100 ms before take-off) and gluteus maximus (300 to 200 ms and 100 to 0 ms before take-off). During the early take-off in the jumping boots condition, significantly more pressure was recorded under the heel ( P ? 0.001), whereas the forefoot was more highly loaded at the end of the take-off. Differences in take-off velocity (representing the final output of the take-off) can be accounted for in the main by the different use of plantar flexion, emphasizing the role of the knee and hip extensors when wearing jumping boots. We conclude that the stiffness of the structure of the jumping boots may result in a forward shift of pressure, thus limiting the effective vertical force. To avoid this pressure shift, the pattern of movement of simulated take-offs should be carefully controlled, particularly when wearing training shoes.  相似文献   

9.
In this study, we measured the vertical and horizontal take-off forces, plantar pressures and activation patterns of four muscles (vastus lateralis, gluteus maximus, tibialis anterior, gastrocnemius) in 10 ski jumpers in simulated laboratory conditions when wearing either training shoes or ski jumping boots. We found significant differences in vertical (P < 0.001), horizontal (P < 0.05) and resultant (P < 0.001) take-off velocities and vertical force impulse (P < 0.01). We found no significant differences in the jumpers' initial take-off positions; however, the jumping boots condition resulted in a smaller displacement in the final position of the following joint angles: ankle angle (P < 0.001), knee angle (P < 0.001), hip angle (P < 0.01) and shank angle relative to the horizontal (P < 0.01). This corresponds with less electromyographic activity during take-off in both the gastrocnemius (300 to 200 ms and 200 to 100 ms before take-off) and gluteus maximus (300 to 200 ms and 100 to 0 ms before take-off). During the early take-off in the jumping boots condition, significantly more pressure was recorded under the heel (P < 0.001), whereas the forefoot was more highly loaded at the end of the take-off. Differences in take-off velocity (representing the final output of the take-off) can be accounted for in the main by the different use of plantar flexion, emphasizing the role of the knee and hip extensors when wearing jumping boots. We conclude that the stiffness of the structure of the jumping boots may result in a forward shift of pressure, thus limiting the effective vertical force. To avoid this pressure shift, the pattern of movement of simulated take-offs should be carefully controlled, particularly when wearing training shoes.  相似文献   

10.
The aims of this study were to determine: (1) the modes of action of selected muscles of the supporting leg during the take-off of a running long jump; (2) whether the instant at which maximum knee flexion is recorded is a valid indicator of the instant these muscles change their modes of action; and (3) the relationships between the actions of these muscles and the change in the vertical velocity of the centre of mass during the take-off. Eleven elite, female long jumpers performed six jumps from a full-length approach. A model of selected muscles of the jumping leg was developed to estimate muscle-tendon lengths from segment positions obtained using cinematography. Only half of the muscles exhibited a lengthening-shortening sequence of activity. The instant at which maximum knee flexion was recorded was a poor indicator of when the muscles changed from eccentric to concentric activity. The more the vasti muscles were stretched, the larger the gain in vertical velocity; the longer the triceps surae muscles at touchdown, the more they were stretched, and the faster they were stretched, the larger the gain in vertical velocity. Enhancement through use of the stretch-shortening cycle did not make a significant contribution to vertical velocity via the actions of the vasti and triceps surae muscles.  相似文献   

11.
Negative work, which is mainly generated by eccentric muscle contraction, has an important influence on the associated muscle damage. Generally, mechanical parameters are determined for one side of a lower extremity on the assumption of negligible between-limb differences. However, between-limb differences in the negative work of lower extremity joints during running remain unclear. This study examines between-limb differences in negative work and associated mechanical parameters during the contact phase of running. Twenty-five young adult males voluntarily participated in this study. Each participant was asked to run on a straight runway at a speed of 3.0?m?s?1. Negative work, amplitude, duration of negative power, moment, and angular velocity were computed for both sides of the lower extremities. Significant differences were found in negative work between limbs for the hip (18.9?±?11.7%), knee (13.6?±?10.4%), and ankle (11.8?±?8.5%) joints. For the hip joint, asymmetric negative work was attributable to the between-limb difference in the amplitude of negative power owing to a corresponding difference in the moment. The between-limb differences concerning the duration and amplitude of negative power could explain the asymmetric negative work in the knee joint. The asymmetric negative work of the ankle joint was attributable to the between-limb difference in the amplitude and duration of the negative power and the moment. These results indicate that asymmetric negative work was generated in each lower extremity joint; however, the major mechanical parameters corresponding to the negative work are not the same across the joints.  相似文献   

12.
ABSTRACT

Previous research suggests that landing mechanics may be affected by the mechanics of the preceding jump take-off. The purpose of the present study was to investigate whether jump take-off mechanics influence the subsequent landing mechanics. Female volleyball (n = 17) and ice hockey (n = 19) players performed maximal vertical jumps with forefoot and heel take-off strategies. During forefoot and heel jumps, participants were instructed to shift their weight to their forefoot or heel, respectively, and push through this portion of the foot throughout the jump. Jump mechanics were examined using 3D motion analysis, where lower extremity net joint moment (NJM) work, NJM, and segment angles were compared between forefoot and heel jumps using multivariate ANOVA. During jump take-off, participants performed more positive ankle plantar flexor and knee extensor NJM work in forefoot compared to heel jumps (P < 0.05). From initial foot contact to foot flat, participants performed more negative ankle plantar flexor and hip extensor NJM work during heel compared to forefoot jumps (P < 0.05). The present results demonstrate that using a heel take-off strategy results in a different distribution of lower extremity NJM work and NJM during landing compared to landings following forefoot jumps.  相似文献   

13.
The neuromuscular control aspect of cycling has been investigated through the effects of modifying posture and cadence. These studies show that changing posture has a more profound influence on neuromuscular coordination than does changing slope. Most of the changes with standing posture occur late in the downstroke: increased ankle and knee joint moment, reduced hip joint moment and greater activity in specific muscles. Due to the influence of lower extremity inertial properties, higher pedaling frequency induces more neuromuscular changes at the hip than at the knee or ankle joints. These neuromuscular adaptations to environmental and task constraints are discussed with regard to the contributions of the central nervous system and the solution provided by peripheral anatomical structure--mono- and biarticular muscles. The results indicate that training and related movement analysis should be specific to the motion, supporting the notion of task-specific training.  相似文献   

14.
为了探讨短距离助跑跳远这一练习方法的运动生物力学意义,本文对跳远运动员的短距离助跑和全程助跑跳远进行高速摄影和三维测力的同步测试.并通过对其分析和研究,结果表明:1)短距离助跑与全程助跑的水平速度、跳跃距离之差约为10%;2)起跳时间和力作用于垂直方向的时间比全程助跑长;3)腾起角度大于全程助跑;4)身体重心腾起高度和滞空时间与全程助跑相同。  相似文献   

15.
对我国部分优秀女子跳高运动员起跳前后的一些技术分析   总被引:4,自引:0,他引:4  
采用三维高速摄像系统对我国参加 1998年亚运会选拔赛达到健将以上水平的 7名女子跳高选手起跳前后的一些技术进行分析,发现:我国选手在起跳瞬间的垂直速度有一定提高,H_1、H_2 与世界选手之间有一定的差距,差距在于:起跳离地瞬间踝关节、膝关节及髋关节的蹬伸不够,起跳前一步至蹬摆幅度小。  相似文献   

16.
目的:确定运动员在落地后即刻启动完成侧切变向(LSC)动作的下肢踝、膝和髋三关节矢状面的运动学和动力学特点,并与平地跑动侧切变向(SC)对比分析、探讨这些差异对下肢关节造成的影响。方法:以14名高水平足球运动员为背景的大学生完成落地侧切和平跑侧切动作时的下肢运动学和动力学数据进行采集与分析。结果:LSC动作的踝、膝关节ROM和关节角速度显著增加,髋关节ROM则呈相反趋势(P<0.05或P<0.01);LSC的踝、膝和髋关节力矩峰值,踝、髋关节功率峰值呈现显著大于SC(P<0.01),膝关节功率峰值小于SC(P<0.05);LSC在水平向后、垂直向上地反峰值及峰值加载率有明显的增加(P<0.01),水平向右地反无明显差异(P>0.05)。结论:LSC虽然略降低了膝关节功率峰值,但其余所有运动学、动力学及GRF都预示其下肢关节所承受的损伤风险更高,尤其是踝关节和膝关节。踝关节的高功率和跖屈肌的持续紧张、伸膝力矩和三维地反的显著升高,使得该动作比公认高损伤风险的平跑侧切损伤风险几率更大。  相似文献   

17.
The purpose of this study was to investigate the possible arm swing effect on the biomechanical parameters of vertical counter movement jump due to differences of the compliance of the take-off surface. Fifteen elite male beach-volleyball players (26.2 ± 5.9 years; 1.87 ± 0.05 m; 83.4 ± 6.0 kg; mean ± standard deviation, respectively) performed counter movement jumps on sand and on a rigid surface with and without an arm swing. Results showed significant (p < .05) surface effects on the jump height, the ankle joint angle at the lowest height of the body center of mass and the ankle angular velocity. Also, significant arm swing effects were found on jump height, maximum power output, temporal parameters, range of motion and angular velocity of the hip. These findings could be attributed to the instability of the sand, which resulted in reduced peak power output due to the differences of body configuration at the lowest body position and lower limb joints’ range of motion. The combined effect of the backward arm swing and the recoil of the sand that resulted in decreased resistance at ankle plantar flexion should be controlled at the preparation of selected jumping tasks in beach-volleyball.  相似文献   

18.
Due to the significant amount of time dancers spend on the forefoot, loads on the metatarsophalangeal joints are likely high, yet vary between dance movements. The purpose of this study was to compare joint motion and net joint moments at the metatarsophalangeal joints during three different dance movements ranging in demands at the foot and ankle joints. Ten healthy, female dancers (27.6 ± 3.2 years; 56.3 ± 6.9 kg; 1.6 ± 0.1 m) with an average 21.7 ± 4.9 years of dance training performed relevés (rising up onto the toes), sautés (vertical bipedal jumps), and saut de chat leaps (split jumps involving both vertical and horizontal components). Metatarsophalangeal joint kinematics and kinetics in the sagittal plane were calculated. Total excursion and peak net joint moments during rising or push-off were compared between the three dance movements. Greater extension of the metatarsophalangeal joints was seen during relevés compared to sautés or saut de chat leaps, and the largest metatarsophalangeal net joint moments were seen during saut de chat leaps. The metatarsophalangeal joints frequently and repetitively manage external loads and substantial metatarsophalangeal extension during these three dance movements, which may contribute to the high rate of foot and ankle injuries in dancers.  相似文献   

19.
Research has focused on the effects of acute strike pattern modifications on lower extremity joint stiffness and running economy (RE). Strike pattern modifications on running biomechanics have mostly been studied while runners complete short running bouts. This study examined the effects of an imposed forefoot strike (FFS) on RE and ankle and knee joint stiffness before and after a long run in habitual rearfoot strike (RFS) runners. Joint kinetics and RE were collected before and after a long run. Sagittal joint kinetics were computed from kinematic and ground reaction force data that were collected during over-ground running trials in 13 male runners. RE was measured during treadmill running. Knee flexion range of motion, knee extensor moment and ankle joint stiffness were lower while plantarflexor moment and knee joint stiffness were greater during imposed FFS compared with RFS. The long run did not influence the difference in ankle and knee joint stiffness between strike patterns. Runners were more economical during RFS than imposed FFS and RE was not influenced by the long run. These findings suggest that using a FFS pattern towards the end of a long run may not be mechanically or metabolically beneficial for well-trained male RFS runners.  相似文献   

20.
The ankle joint’s role in shock absorption during landing has been researched in many studies, which have found that landing with higher amounts of plantarflexion (PF) results in lower peak vertical ground reaction forces and loading rates. However, there has not yet been a study that compares drop landings within participants along a quantitative continuum of PF angles. Using a custom-written real-time feedback program, participants adjusted their ankles to an instructed PF angle and dropped onto two force platforms. For increasing PF, peak ground reaction force and peak loading rate during weight acceptance decreased significantly. The hip’s contribution to peak support moment decreased as PF at initial contact increased up to 30°. The ankle and knee contributions increased over this same continuum of PF angles. There appears to be no optimal PF angle based on peak ground reaction force and loading rate measurements, but there may be an optimum where joint contributions to peak support moment converge and the hip moment’s contribution is minimised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号