首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The purpose of this study was to validate an alternative skinfold equation for women created from dual-energy x-ray absorptiometry (DXA). Anthropometrics and a whole-body DXA scan were completed on 77 women (mean age: 28.0 ± 10.2 years). Four Jackson-Pollack (JP) skinfold prediction equations and the DXA criterion (DC) equation were compared to DXA-derived body fat percentage (%BF). One-way repeated measures ANOVA revealed significant differences (p ≤ .001) in the %BF with post hoc-comparisons revealing significant differences among JP7 (21.3 ± 5.7), JP4 (21.4 ± 5.7), JP3a (22.2 ± 5.9), and JP3b (22.6 ± 5.7) when compared to the DXA-derived %BF; no significant difference existed between DC %BF (26.5 ± 5.6) and DXA-derived %BF (26.5 ± 5.4) (p = 1.0). The DC equation more accurately predicted %BF in women volunteers compared to Jackson-Pollack equations.  相似文献   

2.
Currently, the physiological mechanisms that allow elite level climbers to maintain intense isometric contractions for prolonged periods of time are unknown. Furthermore, it is unclear whether blood flow or muscle oxidative capacity best governs performance. This study aimed to determine the haemodynamic kinetics of 2 forearm flexor muscles in 3 ability groups of rock climbers. Thirty-eight male participants performed a sustained contraction at 40% of maximal voluntary contraction (MVC) until volitional fatigue. Oxygen saturation and blood flow was assessed using near infrared spectroscopy and Doppler ultrasound. Compared to control, intermediate, and advanced groups, the elite climbers had a significantly (< 0.05) higher strength-to-weight ratio (MVC/N), de-oxygenated the flexor digitorum profundus significantly (< 0.05) more (32, 34.3, and 42.8 vs. 63% O2, respectively), and at a greater rate (0.32, 0.27, and 0.34 vs. 0.77 O2%·s?1, respectively). Furthermore, elite climbers de-oxygenated the flexor carpi radialis significantly (< 0.05) more and at a greater rate than the intermediate group (36.5 vs. 14.6% O2 and 0.43 vs. 0.1O2%·s?1, respectively). However, there were no significant differences in total forearm ? blood flow. An increased MVC/N is not associated with greater blood flow occlusion in elite climbers; therefore, oxidative capacity may be more important for governing performance.  相似文献   

3.
Abstract

The aim of the study was to examine several physiological responses to a climbing-specific task to identify determinants of endurance in sport rock climbing. Finger strength and endurance of intermediate rock climbers (n = 11) and non-climbers (n = 9) were compared using climbing-specific apparatus. After maximum voluntary contraction (MVC) trials, two isometric endurance tests were performed at 40% (s = 2.5%) MVC until volitional exhaustion (continuous contractions and intermittent contractions of 10 s, with 3 s rest between contractions). Changes in muscle blood oxygenation and muscle blood volume were recorded in the flexor digitorum superficialis using near infra-red spectroscopy. Statistical significance was set at P < 0.05. Climbers had a higher mean MVC (climbers: 485 N, s = 65; non-climbers 375 N, s = 91) (P = 0.009). The group mean endurance test times were similar. The force – time integral, used as a measure of climbing-specific endurance, was greater for climbers in the intermittent test (climbers: 51,769 N · s, s = 12,229; non-climbers: 35,325 N · s, s = 9724) but not in the continuous test (climbers: 21,043 N · s, s = 4474; non-climbers: 15,816 N · s, s = 6263). Recovery of forearm oxygenation during rest phases (intermittent test) explained 41.1% of the variability in the force – time integral. Change in total haemoglobin was significantly greater in non-climbers (continuous test) than climbers (P = 0.023 – 40% test timepoint, P = 0.014 – 60% test timepoint). Pressor responses were similar between groups and not related to the force – time integral for either test. We conclude that muscle re-oxygenation during rest phases is a predictor of endurance performance.  相似文献   

4.
Abstract

The aims of this study were to determine the validity of fat mass of the trunk as a predictor for visceral fat area at the umbilicus level and to develop equations to predict visceral fat mass at the umbilicus level using fat mass of the trunk measured by dual-energy X-ray absorptiometry (DXA) and bioelectrical impedance analysis (BIA). The participants were 121 normal Japanese adults (69 males, 52 females). Another 60 volunteer adults (34 males, 26 females) were recruited for examination of cross-validity. Altogether, 41 adults (15 males, 26 females) in the original group and 19 adults (7 males, 12 females) in the cross-validity group received BIA measurement. We measured fat mass by DXA and the BIA system, which was a single-frequency BIA with 8-point contact electrodes, and visceral fat area by computed tomography. We observed significant correlations for visceral fat area in waist circumference (0.56) and fat mass of the trunk measured by DXA (0.64). There was no significant difference in fat mass of the trunk between the DXA and BIA systems, but the BIA system tended to provide an underestimate compared with DXA. With combined fat mass of the trunk measured by DXA and waist circumference as predictors, visceral fat area was estimated by equation (1) (R = 0.87, R 2 = 0.76, standard error of the estimate = 20.9 cm2). When substituting fat mass of the trunk measured by BIA into equation (1), there was no significant difference in visceral fat area between the reference and predicted values. An equation using fat mass of the trunk measured by BIA (equation 2) was obtained (R = 0.89, R 2 = 0.78, standard error of the estimate = 20.7 cm2), but a systematic error was found for the males. There was cross-validity in both equations. In conclusion, fat mass of the trunk is an effective predictor for the visceral fat area at the umbilicus level. Fat mass of the trunk measured by BIA might be a valid method to predict visceral fat, although further studies with larger samples taking into account the extent and type of obesity are required.  相似文献   

5.
Abstract

This study determined the precision of pencil and fan beam dual-energy X-ray absorptiometry (DXA) devices for assessing body composition in professional Australian Football players. Thirty-six professional Australian Football players, in two groups (fan DXA, N = 22; pencil DXA, N = 25), underwent two consecutive DXA scans. A whole body phantom with known values for fat mass, bone mineral content and fat-free soft tissue mass was also used to validate each DXA device. Additionally, the criterion phantom was scanned 20 times by each DXA to assess reliability. Test–retest reliability of DXA anthropometric measures were derived from repeated fan and pencil DXA scans. Fat-free soft tissue mass and bone mineral content from both DXA units showed strong correlations with, and trivial differences to, the criterion phantom values. Fat mass from both DXA showed moderate correlations with criterion measures (pencil: r = 0.64; fan: r = 0.67) and moderate differences with the criterion value. The limits of agreement were similar for both fan beam DXA and pencil beam DXA (fan: fat-free soft tissue mass = ?1650 ± 179 g, fat mass = ?357 ± 316 g, bone mineral content = 289 ± 122 g; pencil: fat-free soft tissue mass = ?1701 ± 257 g, fat mass = ?359 ± 326 g, bone mineral content = 177 ± 117 g). DXA also showed excellent precision for bone mineral content (coefficient of variation (%CV) fan = 0.6%; pencil = 1.5%) and fat-free soft tissue mass (%CV fan = 0.3%; pencil = 0.5%) and acceptable reliability for fat measures (%CV fan: fat mass = 2.5%, percent body fat = 2.5%; pencil: fat mass = 5.9%, percent body fat = 5.7%). Both DXA provide precise measures of fat-free soft tissue mass and bone mineral content in lean Australian Football players. DXA-derived fat-free soft tissue mass and bone mineral content are suitable for assessing body composition in lean team sport athletes.  相似文献   

6.
There have been few reports of advanced body composition profiles of elite fast bowlers in the sport of cricket. Therefore, the aim of the current study was to determine total, regional and unilateral body composition characteristics of elite English first-class cricket fast bowlers in comparison with matched controls, using dual-energy X-ray absorptiometry (DXA). Twelve male fast bowlers and 12 age-matched, non-athletic controls received one total-body DXA scan. Anthropometric data were obtained as well as left and right regional (arms, legs and trunk) fat mass, lean mass and bone mineral content. Fast bowlers were significantly taller and heavier than controls (< 0.05). Relative to body mass, fast bowlers possessed greater lean mass in the trunk (80.9 ± 3.7 vs. 76.7 ± 5.9%; = 0.047) and bone mineral content in the trunk (2.9 ± 0.3 vs. 2.6 ± 0.3%; = 0.049) and legs (5.4 ± 0.5 vs. 4.6 ± 0.6%; = 0.003). In the arm region, fast bowlers demonstrated significantly greater unilateral differences in bone mineral content (10.6 ± 6.6 vs. 4.5 ± 3.9%; = 0.012). This study provides specific body composition values for elite-level fast bowlers and highlights the potential for muscle and bone imbalances that may be useful for conditioning professionals. Our findings also suggest beneficial adaptations in body composition and bone mass in fast bowlers compared with their non-athletic counterparts.  相似文献   

7.
Abstract

We assessed the agreement between maximal oxygen consumption ([Vdot]O2max) measured directly when performing the 20-m shuttle run test and estimated [Vdot]O2max from five different equations (i.e. Barnett, equations a and b; Léger; Matsuzaka; and Ruiz) in youths. The 20-m shuttle run test was performed by 26 girls (mean age 14.6 years, s = 1.5; body mass 57.2 kg, s = 8.9; height 1.60 m, s = 0.06) and 22 boys (age 15.0 years, s = 1.6; body mass 63.5 kg, s = 11.5; height 1.70 m, s = 0.01). The participants wore a portable gas analyser (K4b2, Cosmed) to measure [Vdot]O2 during the test. All the equations significantly underestimated directly measured [Vdot]O2max, except Barnett's (b) equation. The mean difference ranged from 1.3 ml · kg?1 · min?1 (Barnett (b)) to 5.5 ml · kg?1 · min?1 (Léger). The standard error of the estimate ranged from 5.3 ml · kg?1 · min?1 (Ruiz) to 6.5 ml · kg?1 · min?1 (Léger), and the percentage error ranged from 21.2% (Ruiz) to 38.3% (Léger). The accuracy of the equations available to estimate [Vdot]O2max from the 20-m shuttle run test is questionable at the individual level. Furthermore, special attention should be paid when comparisons are made between studies (e.g. population-based studies) using different equations. The results of the present study suggest that Barnett's (b) equation provides the closest agreement with directly measured [Vdot]O2max (cardiorespiratory fitness) in youth.  相似文献   

8.
9.
Abstract

The aims of this study were to examine training characteristics, body composition, muscular strength, and endurance in sport climbers, and to demonstrate the relationship among these components by means of structural equation modelling. Altogether, 205 sport climbers (136 males, 69 females), with a performance RP (red point) of grade 4 to 11 on the Union Internationale des Association d'Alpinisme (UIAA) scale, took part in the study. The proposed structural model, with latent variable hand–arm strength and endurance (developed from reference values for simple tests), indicated by three manifest variables (grip strength, bent-arm hang, and finger hang) and three exogenous variables (body fat, volume of climbing, and climbing experience), explained 97% of the variance in climbing performance. The relationship between body fat and climbing experience/volume with climbing performance was not direct, but was better explained using the mediator hand–arm strength and endurance. We conclude that these simple tests, together with percent body fat, volume of climbing, and climbing experience, can satisfactorily predict climbing performance.  相似文献   

10.
Stand-up paddle boarding (SUP) is a rapidly growing activity where only anecdotal evidence exists for its proposed health and fitness benefits. The purpose of this study was to profile elite and recreational SUP with respect to anthropometric, physiological and musculoskeletal measurements. A total of 30 SUP participants (15 recreational, 15 elite) and 15 sedentary controls participated in this study. Elite and recreational (rec) SUP participants had significantly lower body fat than sedentary (sed) individuals, elite had significantly higher HDL and significantly lower triglycerides than other groups during lipid profiling (P > 0.05). There were significant differences (> 0.05) between all groups in maximal oxygen uptake (elite 43.7, s = 5.89 ml · kg–1 · min–1 vs. rec 31.9, s = 7.7 ml · kg–1 · min–1 vs. sed 20.4, s = 3.7 ml · kg–1 · min–1) and anaerobic power outputs (35.7, s = 11.1 W vs. 25.0, = 11.7 W vs. 13.5, = 7.1 W). The elite group displayed significantly longer endurance than the recreational and sedentary group in the prone bridge (elite 253.4, s = 67.6 s vs. rec 165.6, s = 42.2 s vs. sed 69.7, s = 31.2 s), right-sided bridge (elite 107.9, = 34.0 s vs. recreational 68.2, s = 24.1 s vs. sed 34.6, s = 15.5 s), left-sided bridge (elite 99.8, s = 24.9 s vs. rec 68.2, s = 27.2 s vs. sed 32.5, s = 15.2 s) and Biering Sorensen test (elite 148.8, s = 35.4 s vs. rec 127.2, = 43.2 s vs. sed 71.1, = 32.9 s). Elite SUP had significantly better static and dynamic postural control when compared to the other groups. This study demonstrates the anthropometric, physiological and musculoskeletal values representative of elite and recreational SUP. SUP appears to be associated with increased levels of aerobic and anaerobic fitness, increased static and dynamic balance and a high level of isometric trunk endurance.  相似文献   

11.
Abstract

The aims of this study were to establish the physical and physiological attributes of elite and sub-elite Malaysian male badminton players and to determine whether these attributes discriminate elite players from sub-elite players. Measurements and tests of basic anthropometry, explosive power, anaerobic recovery capacity, badminton-specific movement agility, maximum strength, and aerobic capacity were conducted on two occasions, separated by at least one day. The elite (n = 12) and sub-elite (n = 12) players' characteristics were, respectively: mean age 24.6 years (s = 3.7) and 20.5 years (s = 0.7); mass 73.2 kg (s = 7.6) and 62.7 kg (s = 4.2); stature 1.76 m (s = 0.07) and 1.71 m (s = 0.05); body fat 12.5% (s = 4.8) and 9.5% (s = 3.4); estimated VO2max 56.9 ml · kg?1 · min?1 (s = 3.7) and 59.5 ml · kg?1 · min?1 (s = 5.2). The elite players had greater maximum absolute strength in one-repetition maximum bench press (P = 0.015) compared with the sub-elite players. There were significant differences in instantaneous lower body power estimated from vertical jump height between the elite and sub-elite groups (P < 0.01). However, there was no significant difference between groups in shuttle run tests and on-court badminton-specific movement agility tests. Our results show that elite Malaysian male badminton players are taller, heavier, and stronger than their sub-elite counterparts. The test battery, however, did not allow us to discriminate between the elite and sub-elite players, suggesting that at the elite level tactical knowledge, technical skills, and psychological readiness could be of greater importance.  相似文献   

12.
The purpose of this study was to evaluate the validity of prediction equations for estimating maximal oxygen uptake (VO2peak) based on the PACER test and different adiposity indicators in Mexican youth. A convenience sample of youth aged 9–18 years from schools in Mexico City was recruited. VO2peak was evaluated with a laboratory exercise test on a treadmill and using a gas analyser and with the 20-m PACER test guidelines. The sample was randomly divided to develop new equations (n = 220) and to evaluate their validity (n = 106). Prediction equations of VO2peak were developed using multiple linear regression models. The adiposity indicators were BMI, waist circumference and body fat. The validity of the new and previously published equations was evaluated based on linear regression models, intra-class coefficient, Akaike’s information criterion, mean absolute percentage error and Bland-Altman graphs. Equations with waist circumference and body fat performed better than those with BMI and without any anthropometric indicator. The accuracy of the developed equations (R2 = 57.0%–59.50%) was higher than that of previously published equations (R2 = 24.1%–56.0%). The new equations had lower bias in estimating VO2peak. In Mexican youth, the estimation of VO2peak from the 20-m PACER test is more accurate after including waist circumference or body fat than with BMI.  相似文献   

13.
Abstract

The America's Cup is the oldest competing trophy in sport, yet little is known of the nature and intensity of racing or the physical characteristics of the athletes. In this study, aspects of the physical demands of America's Cup yacht racing were analysed, including the intensity of exercise and activity pattern of “grinding”. Anthropometric data were collected from 92 professional male America's Cup sailors, and fitness data from a top-4 and a lower-7 ranking team during the 32nd America's Cup. Over the 135 races, mean race duration was 82 min (s = 9), with 20 tacks (s = 10) and 8 gybes (s = 3) per race. Grinding bouts were 5.5 s (s = 5.4; range: 2.2–66.3) long, with 143 exercise bouts per race and an exercise-to-rest ratio of 1:6. Mean and peak heart rate was 64% and 92% of maximum for all positions, with bowmen highest (71% and 96%). Grinders were taller, heavier, and stronger than all other positions. Body fat was similar between positions (13%, s = 4). The higher-standard team was stronger and had greater strength endurance, which probably contributed to their quicker manoeuvres. Intensity of exercise was dependent on the similarity of competing boats and the role of the athlete. The short duration and intermittent nature of grinding is indicative of predominantly anaerobic energy provision.  相似文献   

14.
Abstract

The aim of this study was to characterize forearm muscle fatigue identified by the decrease in electromyogram median frequency and/or fingertip force during intermittent exercise. Nine elite climbers (international competitive level, USA 5.14a on sight) and ten non-climbers were instructed to maintain a fingertip force of 80% of their maximal voluntary contraction force on a dynamometer mimicking a rock climbing grip during a 5 s effort/5 s rest cycle for 36 repetitions (i.e. 6 min of exercise). Elite climbers lasted twice as long as non-climbers (climbers: 3 min; non-climbers: 1 min 30 s) before the force could no longer be maintained (i.e. the failure point). After this moment, fingertip force decreased and stabilized until the end of the exercise around 50% maximum voluntary contraction force in non-climbers and 63% in elite climbers. Electromyogram median frequency showed a greater decrease in non-climbers than in elite climbers before the failure point. No change in median frequency was observed after the failure point in elite climbers or in non-climbers. These results confirm that elite climbers are better adapted than non-climbers for performing the intermittent fingertip effort before the failure point. After this point, the better fingertip force of elite climbers suggests different forearm muscle properties, while the electromyography results do not provide any indication about the fatigue process.  相似文献   

15.
Abstract

Twenty-four players from the 1st/2nd (elite) and 24 players from the 3rd/4th (non-elite) university football teams were recruited to evaluate the Loughborough Soccer Passing Test (LSPT) and Loughborough Soccer Shooting Test (LSST) as tools to assess soccer skill. The LSPT requires players to complete 16 passes as quickly as possible. The LSST requires players to pass, control, and shoot the ball to targets on a full-sized goal. Participants completed two main trials each separated by at least one day. During both trials, the participants were given practice efforts before recording the mean of the next two (LSPT) or 10 (LSST) attempts as the performance score. For the LSPT, the mean time taken, added penalty time, and overall performance time were less in the elite players (elite: 43.6 s, s = 3.8; non-elite: 52.5 s, s = 7.4; P = 0.0001). For the LSST, there was no difference in the mean points scored per shot between groups (elite: 1.34, s = 0.46; non-elite: 1.28, s = 0.53). However, the elite players had higher mean shot speed (elite: 80 km · h?1, s = 4.5; non-elite: 74 km · h?1, s = 4.2; P < 0.0001) and performed each shot sequence faster (elite: 7.87 s, s = 0.29; non-elite: 8.07 s, s = 0.35; P = 0.037) than the non-elite players. Performance on both tests was more repeatable in elite players. In conclusion, the LSPT and LSST are valid and reliable protocols to assess differences in soccer skill performance.  相似文献   

16.
Abstract

We compared starters and non-starters for various isokinetic strength variables in elite women’s soccer players. A convenience sample of 10 starters (mean ± s; age = 20 ± 2 years; height = 170 ± 4 cm; body mass = 65 ± 5 kg) and 7 non-starters (age = 20 ± 1 years; height = 164 ± 3 cm; body mass = 63 ± 4 kg) performed maximal voluntary muscle actions of the leg extensors (concentric) and flexors (eccentric) on an isokinetic dynamometer in order to measure concentric peak torque for the leg extensors, eccentric peak torque for the leg flexors, and the functional hamstrings:quadriceps (H:Q) ratio at 1.047 rad · s-1 and 4.189 rad · s-1 concentric peak torque for the leg extensors was not different between starters and non-starters. However, it was greater at 1.047 rad · s-1 than at 4.189 rad · s-1 in both groups. Eccentric peak torque for the leg flexors was greater for the starters versus non-starters at 4.189 rad · s-1. Eccentric strength of the leg flexors at fast movement velocities may be used as an effective physiological profile and may discriminate between playing status in elite women’s soccer players.  相似文献   

17.
This study describes the body composition traits of modern-day elite rugby union athletes according to playing position and ethnicity. Thirty-seven international Australian rugby athletes of Caucasian and Polynesian descent undertook body composition assessment using dual-energy X-ray absorptiometry and surface anthropometry. Forwards were significantly taller, heavier and had a greater total fat mass and lean mass than backs. Backs displayed a higher percentage lean mass and lower sum of seven skinfolds and percentage fat mass. While no whole body composition differences were seen between ethnicities, significant regional differences were observed. In the periphery (arm and leg) regions, Polynesians had a greater proportion of fat mass (53.1% vs. 51.3%, P = 0.052, = 0.5) and lean mass (49.7% vs. 48.6%, P = 0.040, = 0.9), while in the trunk region a lower proportion of fat mass (37.2% vs. 39.5%, P = 0.019, = 0.7) and lean mass (45.6% vs. 46.8%, P = 0.020, = 1.1). Significant differences were also seen between Caucasian and Polynesian forwards in leg lean mass (31.4 kg vs. 35.9 kg, P = 0.014, = 2.4) and periphery lean mass (43.8 kg vs. 49.6 kg, P = 0.022, = 2.4). Elite Polynesian rugby athletes have different distribution patterns of fat mass and lean mass compared to Caucasians, which may influence their suitability for particular positions.  相似文献   

18.
Abstract

The purpose of this study was to characterize the body fat, maximum aerobic power and maximum anaerobic power of elite junior wrestlers. The study was conducted in conjunction with an elite wrestler training camp. Wrestlers (n = 39) from ages 14 to 18 qualified for the camp and volunteered as subjects. Measurements were made for body composition (skinfold thickness), maximal aerobic power (treadmill run), and maximal anaerobic power of the arms and legs (Wingate test). Body fat averaged (±SD) 7.2% (±2.4), whereas the means (±SD) for maximal aerobic power, arm power, and leg power were 51.2(±9.3) ml/kg min-1, 390.7 (±92) watts, and 549.1 ± 101 watts, respectively. Elite junior wrestlers appear to have a similar percentage of body fat, lower maximum aerobic power and higher relative anaerobic power compared to elite collegiate and senior wrestlers.  相似文献   

19.
Abstract

Anthropometry and body composition were investigated in 43 female handball players from the Italian championships, grouped according to their competitive level (elite vs. sub-elite) or their playing position [goalkeeper (n = 7), back (n = 14), wing (n = 18), or pivot (n = 4)]. The anthropometry consisted of several circumferences, lengths, widths, and skinfold measurement at six sites; the regional and total body compositions were assessed by means of dual-energy X-ray absorptiometry (DXA). One-way ANOVA was used for statistical analysis, with a Bonferroni post-hoc test where needed. The results showed that elite players have significantly lower percentages of fat and higher bone mineral content than sub-elite as well as a clear tendency to accrue more lean mass, especially in upper limbs. Overall, the physical characteristics and body composition of handball players in Italy compared unfavourably with those in other countries, suggesting a need for improved selection and training. When playing position was included in the analysis of the whole group of handball players (n = 43) significant differences were found between the stature, mass, body mass index (BMI), several skinfolds, circumferences and lengths, and total body mineral mass, lean mass and fat mass of players in different positions. Post-hoc analysis suggests that players on the wing and in goalkeeper positions differed most from one another. These findings confirm and expand on previous data about the presence of anthropometric differences within playing positions in handball.  相似文献   

20.
Pacing strategies of elite swimmers have been consistently characterised from the average lap velocities. In the present study, we examined the racing strategies of 200 m world class-level swimmers with regard to their underwater and surface lap components. The finals and semi-finals of the 200 m races at the 2013 World Swimming Championships (Barcelona, Spain) were analysed by an innovative image-processing system (InThePool® 2.0). Free swimming velocities of elite swimmers typically decreased throughout the 200 m race laps (?0.12 m · s–1, 95% CI ?0.11 to ?0.14 m · s–1, P = 0.001, η2 = 0.81), whereas underwater velocities, which were faster than free swimming, were not meaningfully affected by the race progress (0.02 m · s–1, ?0.01 to 0.04 m · s–1, P = 0.01, η2 = 0.04). When swimming underwater, elite swimmers typically travelled less distance (?0.66 m, ?0.83 to ?0.49 m, P = 0.001, η2 = 0.34) from the first to the third turn of the race, although underwater distances were maintained on the backstroke and butterfly races. These strategies allowed swimmers to maintain their average velocity in the last lap despite a decrease in the free swimming velocity. Elite coaches and swimmers are advised to model their racing strategies by considering both underwater and surface race components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号