首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 945 毫秒
1.
The aim of this study was to examine the metabolic demand and extent of muscle damage of eccentric cycling targeting knee flexor (FLEX) and knee extensor (EXT) muscles. Methods: Eight sedentary men (23.3?±?0.7?y) underwent two eccentric cycling sessions (EXT and FLEX) of 30?min each, at 60% of the maximum power output. Oxygen consumption (VO2), heart rate (HR) and rated perceived exertion (RPE) were measured during cycling. Countermovement and squat jumps (CMJ and SJ), muscle flexibility, muscle soreness and pain pressure threshold (PPT) of knee extensor and flexor muscles were measured before, immediately after and 1–4 days after cycling. Results: FLEX showed greater VO2 (+23%), HR (+14%) and RPE (+18%) than EXT. CMJ and SJ performance decreased similarly after cycling. Muscle soreness increased more after EXT than FLEX and PPT decreased in knee extensor muscles after EXT and decreased in knee flexor muscles after FLEX. Greater loss of muscle flexibility in knee flexor muscles after FLEX was observed. Conclusion: Eccentric cycling of knee flexor muscles is metabolically more demanding than that of knee extensors, however muscle damage induced is similar. Knee flexors experienced greater loss of muscle flexibility possibly due to increased muscle stiffness following eccentric contractions.  相似文献   

2.
The purpose of this study was to verify within- and between-day repeatability and variability in children's oxygen uptake (VO2), gross economy (GE; VO2 divided by speed) and heart rate (HR) during treadmill walking based on self-selected speed (SS). Fourteen children (10.1 ± 1.4 years) undertook three testing sessions over 2 days in which four walking speeds, including SS were tested. Within- and between-day repeatability were assessed using the Bland and Altman method, and coefficients of variability (CV) were determined for each child across exercise bouts and averaged to obtain a mean group CV value for VO2, GE, and HR per speed. Repeated measures analysis of variance showed no statistically significant differences in within- or between-day CV for VO2, GE, or HR at any speed. Repeatability within- and between-day for VO2, GE, and HR for all speeds was verified. These results suggest that submaximal VO2 during treadmill walking is stable and reproducible at a range of speeds based on children's SS.  相似文献   

3.
We measured the effects of stride rate, resistance, and combined arm-leg use on energy expenditure during elliptical trainer exercise and assessed the accuracy of the manufacturer's energy expenditure calculations. Twenty-six men and women (M age = 29 years, SD = 8; M body weight = 73.0 kg, SD = 15.2) participated. Twenty-two participants performed two tests, one without the arm poles (leg-only) and the other with arm poles (combined arm-leg). The other 4 participants performed one test without the arm poles. Both tests consisted of six 5-min stages (two stride rates, 110 and 134 strides.min-1, and three resistance settings: 2, 5, and 8). Steady-state oxygen uptake (VO2), minute ventilation (VE), heart rate (HR) and rating of perceived exertion (RPE) were measured. Repeated measures analysis of variance determined higher (p < .001) VO2, VE, and RPE, but not HR, during combined arm-leg versus leg-only exercise at any given intensity. Increases in stride rate and resistance increased VO2, VE, RPE, and HR with the greatest effect on VE and HR from Levels 5 to 8. The manufacturer's calculated energy expenditure was overestimated during both tests. Although the oxygen cost for elliptical trainer exercise was calculated to be approximately 0.1 ml.kg-1 per stride and 0.7 ml.kg-1.min-1 per resistance level, VO2 varied widely among individuals, possibly due to differences in experience using the elliptical trainer, gender, and body composition. The elliptical trainer offers (a) a variety of intensities appropriate for most individuals and (b) both arm and leg exercise. Due to the wide variability in VO2, predicting the metabolic cost during elliptical trainer exercise for an individual is not appropriate.  相似文献   

4.
The purpose of this study was to determine if the counting talk test can be used to discern whether an individual is exercising above or at/below maximal lactate steady state. Twenty-two participants completed VO2peak and counting talk test incremental step tests followed by an endurance test at 65% of work rate at VO2peak (WRVO2peak). The change in relative count time during endurance exercise decreased in those exercising above maximal lactate steady state only (< .01); however, this change was less than 1 second. Despite a significant correlation during the incremental step test, large changes in counting talk test performance and blood lactate concentration occurred at different points and there was considerable inter-individual variability in counting talk test performance at a given blood lactate concentration. These results suggest that the counting talk test cannot discern whether an individual is exercising above maximal lactate steady state and that it cannot be used to accurately prescribe intensities targeting specific blood lactate concentrations.  相似文献   

5.
The purpose of this study was to investigate the effect of skate blade hollow on oxygen consumption during forward skating on a treadmill. Varsity level female hockey players (n = 10, age = 21.7 years) performed skating tests at three blade hollows [0.25 in (6.35 mm), 0.50 in (12.7 mm), and 0.75 in (19.05 mm)]. The subjects skated for four minutes at three submaximal velocities (12, 14 and 16 km h−1), separated by five minutes of passive recovery. In addition, a VO2max test was performed on the day that the subjects skated at the 0.50 in hollow. The VO2max test commenced at 14 km h−1 and increased by 1 km h−1 each minute until volitional exhaustion was achieved. Four variables were measured for each skating bout, volume of gas expired (V E), volume of oxygen consumed (VO 2), heart rate (HR) and rating of perceived exertion (RPE). No significant differences (p < 0.05) were found in any of the four test variables (V E, VO2, HR, RPE) across the three skate hollows. These results show that when skating on a treadmill at submaximal velocities, skate blade hollow has no significant effect onV E, VO2, HR or RPE.  相似文献   

6.
Abstract

The reliability of individual differences in relative endurance performance and physiological response was studied in prepubescent boys (N = 21) and adult men (N = 21). Subjects were tested twice (test and retest) on a relative endurance test consisting of pedalling a bicycle ergometer for 8 minutes duration at a high initial work-rate. The work-rate averaged 103% ± 1.0% VO2 max (mean ± S.E.) for the children and 105% ± 1.1% VO2 max for the adults, p > .05. Except for minute 3, children and adults had similar patterns for consistency of relative endurance performance (RPM). However, in comparison to adults, children had smaller individual difference variation for both VO2 and HR (p > .05). On the average, children had a greater proportion of total variability in VO2 (34% vs. 17%) and HR (49% vs. 13%) due to intra-individual variability in comparison to true individual differences. Children-adult differences were attributed to maturity differences.  相似文献   

7.
High Intensity Interval Training (HIIT) can be performed with different effort to rest time-configurations, and this can largely influence training responses. The purpose of the study was to compare the acute physiological responses of two HIIT and one moderate intensity continuous training (MICT) protocol in young men. A randomised cross-over study with 10 men [age, 28.3?±?5.5years; weight, 77.3?±?9.3?kg; height, 1.8?±?0.1?m; peak oxygen consumption (VO2peak), 44?±?11?mL.kg?1.min?1]. Participants performed a cardiorespiratory test on a treadmill to assess VO2peak, velocity associated with VO2peak (vVO2peak), peak heart rate (HRpeak) and perceived exertion (RPE). Then participants performed three protocols equated by distance: Short HIIT (29 bouts of 30s at vVO2peak, interspersed by 30s of passive recovery, 29?min in total), Long HIIT (3 bouts of 4?min at 90% of vVO2peak, interspersed by 3?min of recovery at 60% of vVO2peak, 21?min in total) and MICT (21?min at 70% of vVO2peak). The protocols were performed in a randomised order with ≥48 h between them. VO2, HRpeak and RPE were compared. VO2peak in Long HIIT was significantly higher than Short HIIT and MICT (43?±?11 vs 32?±?8 and 37?±?8?mL.kg?1.min?1, respectively, P?P?P?2, HR and RPE than Short HIIT and MICT, suggesting a higher demand on the cardiorespiratory system. Short HIIT and MICT presented similar physiologic and perceptual responses, despite Short HIIT being performed at higher velocities.  相似文献   

8.
To adhere to the principle of “exercise specificity” exercise testing should be completed using the same physical activity that is performed during exercise training. The present study was designed to assess whether aerobic step exercisers have a greater maximal oxygen consumption (max VO2) when tested using an activity specific, maximal step exercise test (SET; arms and legs) versus a maximal running test (legs only). Female aerobic step exercisers (N=18; 20.7 ± 1.5 years) performed three maximal graded exercise tests (GXTs): 2 SETs; 1 treadmill test (TMT). The SET consisted of six 3-min progressive stages of alternate lead, basic step, basic step with biceps curls, knee raise with pull-down, repeater knee with pull-down, lateral lunge with pull-down, and side squat with shoulder presses. Stepping rate was 32 steps· min?1 on an 8-in (20.32 cm) step for stages 1–3, and a 10-in (25.4 cm) step for stages 4–6. Submaximal and maximal heart rate (HR) and oxygen consumption (VO2) were recorded at the end of each stage. Test–retest reliability for the first five stages of the SET ranged from .91 to .97 for HR, and from .84 to .96 for VO2. Maximal HR was significantly greater (p =.0001) for the SET (200 ± 6.2 beats·min?1) as compared to the TMT (193 ± 7.9 beats·min?1). No significant difference was found for max VO2 (42.9 ± 8.5, 41.2 ± 5.9 ml·kg?1·min?1, p =.14). The SET was a valid and reliable protocol for assessing responses of these aerobic step exercisers; however, max VO2 from a TMT did not differ significantly from the SET. Conversely, max HR obtained from the criterion TMT was 7 beats·min?1 lower than from the SET. If a training HR for step exercise (arms and legs exercise) is prescribed based on the max HR from treadmill exercise (legs only), then the training HR should be calculated from a TMT max HR that has been increased by 7 beats·min?1 to obtain an intensity of step exercise comparable to that of running.  相似文献   

9.
ABSTRACT

The aims of this study were to estimate the walking cadence required to elicit a VO2reserve (VO2R) of 40% and determine if fitness status moderates the relationship between walking cadence and %VO2R. Twenty participants (10 male, mean(s) age 32(10) years; VO2max 45(10) mL·kg?1·min?1) completed resting and maximal oxygen consumption tests prior to 7 x 5-min bouts of treadmill walking at increasing speed while wearing an Apple Watch and measuring oxygen consumption continuously. The 7 x 5-min exercise bouts were performed at speeds between 3 and 6 km·h?1 with 5-min seated rest following each bout. Walking cadence measured at each treadmill speed was recorded using the Apple Watch “Activity” app. Using Bayesian regression, we predict that participants need a walking cadence of 138 to 140 steps·min?1 to achieve a VO2R of 40%. However, these values are moderated by fitness status such that those with lower fitness can achieve 40% VO2R at a slower walking cadence. The results suggest that those with moderate fitness need to walk at ~40% higher than the currently recommended walking cadence (100 steps·min?1) to elicit moderate-intensity physical activity. However, walking cadence required to achieve moderate-intensity physical activity is moderated by fitness status.  相似文献   

10.
ABSTRACT

During 20 m shuttle tests, obese adolescents may have difficulty achieving maximum cardiorespiratory performance due to the presence of braking-relaunch phases (BRP). Nineteen obese adolescents aged 15.2 ± 1.5 years (body mass index [BMI] = 39.7 ± 5.9 kg.m?2) performed three graded walking exercises on a 50 m track at speeds between 3 and 6 km/h: a continuous-straight-line protocol (C), a continuous protocol that required turning back every 30 sec (C-BRP) and an intermittent protocol that consisted of successively walking then resting for 15 sec (15–15). Oxygen uptake (VO2), aerobic cost of walking (Cw), ventilation (VE) and rating of perceived exertion (RPE) were measured at each stage during the protocols. During C-BRP, the responses were not significantly higher compared with C (p > 0.30). During 15–15, the VO2, Cw and VE were ~ 15 to 25% lower than during C beginning at 4 km/h (p < 0.05). In obese adolescents, the respiratory impact of sudden directional changes during the 20 m shuttle-type test appeared to be minor at walking speeds. During the 15–15 test, the intensity increases more progressively, and this design may encourage obese adolescents to walk further than during a continuous test.  相似文献   

11.
Introduction: The Moxy is a novel, cutaneously placed muscle oxygen monitor which claims to measure local oxygen saturation (SmO2) and total haemoglobin (THb) using near-infrared spectroscopy. If shown to be reliable, its data storage and telemetric capability will be useful for assessing localised O2 usage during field-based exercise. This study investigated the reliability of the Moxy during cycling and assessed the correlations between its measurements, whole-body O2 consumption (VO2) and heart rate (HR). Methods: Ten highly trained cyclists performed an incremental, step-wise cycling protocol on two occasions while wearing the Moxy. SmO2, THb, VO2 and HR were recorded in the final minute of each five-minute stage. Data were analysed using Spearman’s Order-Rank Coefficient (SROC), Intraclass Correlation (ICC), and Coefficient of Variance (COV). Significance was set at p?≤?.05. Results: SmO2 showed a ‘strong’ or ‘very large’ correlation between trials (SROC: r?=?0.842–0.993, ICC: r?=?0.773–0.992, p?≤?.01) and was moderately correlated with VO2 and HR (r?=??0.71–0.73, p?≤?.01). SmO2 showed a moderate to high reliability at low intensities, but this decreased as relative exercise intensity increased. THb showed poor correlations between tests and with the other measured variables, but was highly reliable at all power outputs. Conclusions: The Moxy is a reliable device to measure SmO2 at low to moderate intensities, but at higher intensities, greater variation in measurements occurs, likely due to tissue ischaemia or increased movement artefacts due to more frequent muscular contractions. THb has low variation during exercise, and does not appear to be a valid indicator of muscle oxygenation.  相似文献   

12.
Exercise testing on motorised treadmills provides valuable information about running performance and metabolism; however, the impact of treadmill type on these tests has not been investigated. This study compared the energy demand of running on two laboratory treadmills: an HP Cosmos (C) and a Quinton (Q) model, with the latter having a 4.5 times stiffer running platform. Twelve experienced runners ran identical bouts on these treadmills at a range of four submaximal velocities (reported data is for the velocity that approximated 75–81% VO2max). The stiffer treadmill elicited higher oxygen consumption (C: 46.7 ± 3.8; Q: 50.1 ± 4.3 ml·kg?1 · min?1), energy expenditure (C: 16.0 ± 2.5; Q: 17.7 ± 2.9 kcal · min?1), carbohydrate oxidation (C: 9.6 ± 3.1; Q: 13.0 ± 3.9 kcal · min?1), heart rate (C: 155 ± 16; Q: 163 ± 16 beats · min?1) and rating of perceived exertion (C: 13.8 ± 1.2; Q: 14.7 ± 1.2), but lower fat oxidation (C: 6.4 ± 2.3; Q: 4.6 ± 2.5 kcal · min?1) (all analysis of variance treadmill comparisons < 0.01). This study confirms that caution is required when comparing performance and metabolic results between different treadmills and suggests that treadmills will vary in their comparability to over-ground running depending on the running platform stiffness.  相似文献   

13.
Purpose: To investigate the effect of sodium bicarbonate (NaHCO3) on performance and estimated energy system contribution during simulated taekwondo combat. Methods: Nine taekwondo athletes completed two experimental sessions separated by at least 48?h. Athletes consumed 300?mg/kg body mass of NaHCO3 or placebo (CaCO3) 90?min before the combat simulation (three rounds of 2 min separated by 1 min passive recovery), in a double-blind, randomized, repeated-measures crossover design. All simulated combat was filmed to quantify the time spent fighting in each round. Lactate concentration [La?] and rating of perceived exertion (RPE) were measured before and after each round, whereas heart rate (HR) and the estimated contribution of the oxidative (WOXI), ATP (adenosine triphosphate)-phosphocreatine (PCr) (WPCR), and glycolytic (W[ La? ]) systems were calculated during the combat simulation. Results: [La?] increased significantly after NaHCO3 ingestion, when compared with the placebo condition (+14%, P?=?0.04, d?=?3.70). NaHCO3 ingestion resulted in greater estimated glycolytic energy contribution in the first round when compared with the placebo condition (+31%, P?=?0.01, d?=?3.48). Total attack time was significantly greater after NaHCO3 when compared with placebo (+13%, P?=?0.05, d?=?1.15). WOXI, WPCR, VO2, HR and RPE were not different between conditions (P?>?0.05). Conclusion: NaHCO3 ingestion was able to increase the contribution of glycolytic metabolism and, therefore, improve performance during simulated taekwondo combat.  相似文献   

14.
This review evaluated the effects of precooling via cold water immersion (CWI) and ingestion of ice slurry/slushy or crushed ice (ICE) on endurance performance measures (e.g. time-to-exhaustion and time trials) and psychophysiological parameters (core [Tcore] and skin [Tskin] temperatures, whole body sweat [WBS] response, heart rate [HR], thermal sensation [TS], and perceived exertion [RPE]). Twenty-two studies were included in the meta-analysis based on the following criteria: (i) cooling was performed before exercise with ICE or CWI; (ii) exercise longer than 6?min was performed in ambient temperature ≥26°C; and (iii) crossover study design with a non-cooling passive control condition. CWI improved performance measures (weighted average effect size in Hedges’ g [95% confidence interval]?+?0.53 [0.28; 0.77]) and resulted in greater increase (ΔEX) in Tskin (+4.15 [3.1; 5.21]) during exercise, while lower peak Tcore (?0.93 [?1.18; ?0.67]), WBS (?0.74 [?1.18; ?0.3]), and TS (?0.5 [?0.8; ?0.19]) were observed without concomitant changes in ΔEX-Tcore (+0.19 [?0.22; 0.6]), peak Tskin (?0.67 [?1.52; 0.18]), peak HR (?0.14 [?0.38; 0.11]), and RPE (?0.14 [?0.39; 0.12]). ICE had no clear effect on performance measures (+0.2 [?0.07; 0.46]) but resulted in greater ΔEX-Tcore (+1.02 [0.59; 1.45]) and ΔEX-Tskin (+0.34 [0.02; 0.67]) without concomitant changes in peak Tcore (?0.1 [?0.48; 0.28]), peak Tskin (+0.1 [?0.22; 0.41]), peak HR (+0.08 [?0.19; 0.35]), WBS (?0.12 [?0.42; 0.18]), TS (?0.2 [?0.49; 0.1]), and RPE (?0.01 [?0.33; 0.31]). From both ergogenic and thermoregulatory perspectives, CWI may be more effective than ICE as a precooling treatment prior to exercise in the heat.  相似文献   

15.
The purpose of this study was to investigate kinematic and spatiotemporal variables of aquatic treadmill walking at three different water depths. A total of 15 healthy individuals completed three two-minute walking trials at three different water depths. The aquatic treadmill walking was conducted at waist-depth, chest-depth and neck-depth, while a customised 3-D underwater motion analysis system captured their walking. Each participant’s self-selected walking speed at the waist level was used as a reference speed, which was applied to the remaining two test conditions. A repeated measures ANOVA showed statistically significant differences among the three walking conditions in stride length, cadence, peak hip extension, hip range of motion (ROM), peak ankle plantar flexion and ankle ROM (All p values < 0.05). The participants walked with increased stride length and decreased cadence during neck level as compared to waist and chest level. They also showed increased ankle ROM and decreased hip ROM as the water depth rose from waist and chest to the neck level. However, our study found no significant difference between waist and chest level water in all variables. Hydrodynamics, such as buoyancy and drag force, in response to changes in water depths, can affect gait patterns during aquatic treadmill walking.  相似文献   

16.
17.
Abstract

The purpose of the present study was to determine the effects of 10-in [025–m] versus 16-in [0.41-m] wheelchair handrims on cardiorespiratory and psychophysiological exercise responses during wheelchair propulsion at selected velocities. Fifteen male paraplegics (27.0 ± 5.5 yrs) performed three discontinuous exercise tests (ACE = arm crank ergometer; WERG = wheelchair roller ergometer) and two 1600-m performance-based track trials (TRACK) under simulated race conditions. There were no significant differences in HR, VO2, VE, HLa, or category-ratio ratings of perceived exertion (RPE) using different handrims during wheelchair propulsion at 4 km-h1. In contrast, at 8 km-h?1 subjects demonstrated a 13% lower steady state VO2 (p < .05) using the 10-in handrims, coincident with a 23% lower VE Steady state HR during WERG at 8 km-h?1 using the 10-in (124.4 ± 39 b.min?1) or 16-in (130.6 ± 4.6 b.min?1) handrims were not significantly different. There were also no significant differences between ACE or WERG conditions during maximal effort for VO2 or VE. However, HRpeak during ACE was 7% higher than HRpeak during WERG16 (183 ± 15 b.min?1 vs. 171 ± 12 b.min?1, p < .05), and whole blood HLa during ACE was also significantly higher (by 2.3-2.5 mmol; p < .05) compared to WERG. There were no significant differences for HR, performance time, or RPE between trials using different handrim diameters during the 1600-m event. In contrast, HLa was significantly lower using smaller handrims (9.9 mmol) compared with larger handrims (11.3 mmol), paralleling a similar difference in the laboratory. Although these data demonstrated few significant differences of physiologic responses between trials using different handrims, there was a tendency for a lower metabolic stress using the smaller handrims.  相似文献   

18.
Abstract

Oxygen uptake (VO2) and heart rate (HR) kinetics for submaximum exercise were compared in prepubescent boys (mean age ± SD = 10.2 ± 1.28 years, N = 21) and adult men (30.0 ± 5.64 years, N = 21). Standard open circuit spirometric techniques were used to determine VO2 and a bipolar ECG was used to measure HR. The kinetics of VO2 and HR were determined for each subject using graphic procedures. Subjects performed submaximum exercise on the bicycle ergometer at an intensity of 42 ± 1.3% (mean ± SE) of VO2 max for the children and 39 ± 0.7% of VO2 max for the adults (p = .07). There were no group differences in VO2 t1/2 (children t1/2 = 18.5 ± 0.75 secs and adults t1/2 = 17.4 ± 0.39 secs, p = .18) and HR t1/2 (children t1/2 = 11.4 ± 1.86 secs and adults t1/2 = 13.6 ± 1.66 secs, p = .38). These data suggest that children and adults do not differ in cardiorespiratory adjustments during low intensity exercise. This is in contrast to suggestions of other investigators that children have a faster cardiovascular adjustment to exercise.  相似文献   

19.
Acute ingestion of ketone salts induces nutritional ketosis by elevating β-hydroxybutyrate (βHB), but few studies have examined the metabolic effects of ingestion prior to exercise. Nineteen trained cyclists (12 male, 7 female) undertook graded exercise (8 min each at ~30%, 40%, 50%, 60%, 70%, and 80% VO2peak) on a cycle ergometer on two occasions separated by either 7 or 14 days. Trials included ingestion of boluses of either (i) plain water (3.8?mL?kg?body mass?1) (CON) or (ii) βHB salts (0.38?g?kg?body mass?1) in plain water (3.8?mL?kg body mass?1) (KET), at both 60 min and 15 min prior to exercise. During KET, plasma [βHB] increased to 0.33?±?0.16?mM prior to exercise and 0.44?±?0.15?mM at the end of exercise (both p?.05). Plasma glucose was 0.44?±?0.27?mM lower (p?.01) 30?min after ingestion of KET and remained ~0.2?mM lower throughout exercise compared to CON (p?.001). Respiratory exchange ratio (RER) was higher during KET compared to CON (p?.001) and 0.03–0.04 higher from 30%VO2peak to 60%VO2peak (all p?.05). No differences in plasma lactate, rate of perceived exertion, or gross or delta efficiency were observed between trials. Gastrointestinal symptoms were reported in 13 out of 19 participants during KET. Acute ingestion of βHB salts induces nutritional ketosis and alters the metabolic response to exercise in trained cyclists. Elevated RER during KET may be indicative of increased ketone body oxidation during exercise, but at the plasma βHB concentrations achieved, ingestion of βHB salts does not affect lactate appearance, perceived exertion, or muscular efficiency.  相似文献   

20.
Abstract

The objective of this study was to investigate the effects of wearing compression socks (CS) on performance indicators and physiological responses during prolonged trail running. Eleven trained runners completed a 15.6 km trail run at a competition intensity whilst wearing or not wearing CS. Counter movement jump, maximal voluntary contraction and the oxygenation profile of vastus lateralis muscle using near-infrared spectroscopy (NIRS) method were measured before and following exercise. Run time, heart rate (HR), blood lactate concentration and ratings of perceived exertion were evaluated during the CS and non-CS sessions. No significant difference in any dependent variables was observed during the run sessions. Run times were 5681.1±503.5 and 5696.7±530.7 s for the non-CS and CS conditions, respectively. The relative intensity during CS and non-CS runs corresponded to a range of 90.5–91.5% HRmax. Although NIRS measurements such as muscle oxygen uptake and muscle blood flow significantly increased following exercise (+57.7% and + 42.6%,+59.2% and + 32.4%, respectively for the CS and non-CS sessions, P<0.05), there was no difference between the run conditions. The findings suggest that competitive runners do not gain any practical or physiological benefits from wearing CS during prolonged off-road running.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号