首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbohydrate ingestion before and during endurance exercise delays the onset of fatigue (reduced power output). Therefore, endurance athletes are recommended to ingest diets high in carbohydrate (70% of total energy) during competition and training. However, increasing the availability of plasma free fatty acids has been shown to slow the rate of muscle and liver glycogen depletion by promoting the utilization of fat. Ingested fat, in the form of long-chain (C 16-22 ) triacylglycerols, is largely unavailable during acute exercise, but medium-chain (C 8-10 ) triacylglycerols are rapidly absorbed and oxidized. We have shown that the ingestion of medium-chain triacylglycerols in combination with carbohydrate spares muscle carbohydrate stores during 2 h of submaximal (< 70% VO 2 peak) cycling exercise, and improves 40 km time-trial performance. These data suggest that by combining carbohydrate and medium-chain triacylglycerols as a pre-exercise supplement and as a nutritional supplement during exercise, fat oxidation will be enhanced, and endogenous carbohydrate will be spared. We have also examined the chronic metabolic adaptations and effects on substrate utilization and endurance performance when athletes ingest a diet that is high in fat (> 70% by energy). Dietary fat adaptation for a period of at least 2-4 weeks has resulted in a nearly two-fold increase in resistance to fatigue during prolonged, low- to moderate-intensity cycling (< 70% VO 2 peak). Moreover, preliminary studies suggest that mean cycling 20 km time-trial performance following prolonged submaximal exercise is enhanced by 80 s after dietary fat adaptation and 3 days of carbohydrate loading. Thus the relative contribution of fuel substrate to prolonged endurance activity may be modified by training, pre-exercise feeding, habitual diet, or by artificially altering the hormonal milieu or the availability of circulating fuels. The time course and dose-response of these effects on maximizing the oxidative contribution of fat for exercise metabolism and in exercise performance have not been systematically studied during moderate- to high-intensity exercise in humans.  相似文献   

2.
Abstract

Both carbohydrate depletion and dehydration have been shown to decrease performance whilst severe dehydration can also cause adverse health effects. Therefore carbohydrate and fluid requirements are increased with exercise. Ingestion of 200–300?g of CHO 3–4?h prior to exercise is an effective strategy in order to meet daily CHO demands and increase CHO availability during the subsequent exercise period. There is little evidence that CHO during the hour immediately prior to exercise has adverse effects such as rebound hypoglycaemia. CHO ingestion during exercise has been shown to improve performance as measured by enhanced work output or decreased exercise time to complete a fixed amount of work. Recent studies have demonstrated that exogenous CHO oxidation rates can be increased by ingesting combinations of CHO that use different intestinal CHO transporters. After exercise maximal muscle glycogen re-synthesis rates can be achieved by ingesting CHO at a rate of ~1.2?g/kg/h, in relatively frequent (e.g., 15–30?min) intervals for up to 5?h following exercise. Protein amino acid mixtures may increase glycogen synthesis further but only if relatively small amounts of CHO are ingested.

Hypohydration and hyperthermia alone have negative effects on performance but their combination is particularly serious, both in terms of performance and health. Dehydration can be prevented by fluid ingestion pre exercise and during exercise. Because of large individual differences it is difficult to individualise the advice. Perhaps the best guidance for athletes is to weigh themselves to assess fluid losses during training and racing and limit weight losses to 1% during exercise lasting longer than 1.5?h. Excessive fluid intake has been associated with hyponatremia. Post exercise the volume of fluid ingested and sodium intake are important determinants of rehydration.  相似文献   

3.
The purpose of this study was to examine the influence of a carbohydrate-rich meal on post-prandial metabolic responses and skeletal muscle glycogen concentration. After an overnight fast, eight male recreational/club endurance runners ingested a carbohydrate (CHO) meal (2.5 g CHO x kg(-1) body mass) and biopsies were obtained from the vastus lateralis muscle before and 3 h after the meal. Ingestion of the meal resulted in a 10.6 +/- 2.5% (P < 0.05) increase in muscle glycogen concentration (pre-meal vs post-meal: 314.0 +/- 33.9 vs 347.3 +/- 31.3 mmol x kg(-1) dry weight). Three hours after ingestion, mean serum insulin concentrations had not returned to pre-feeding values (0 min vs 180 min: 45 +/- 4 vs 143 +/- 21 pmol x l(-1)). On a separate occasion, six similar individuals ingested the meal or fasted for a further 3 h during which time expired air samples were collected to estimate the amount of carbohydrate oxidized over the 3 h post-prandial period. It was estimated that about 20% of the carbohydrate consumed was converted into muscle glycogen, and about 12 % was oxidized. We conclude that a meal providing 2.5 g CHO x kg(-1) body mass can increase muscle glycogen stores 3 h after ingestion. However, an estimated 67% of the carbohydrate ingested was unaccounted for and this may have been stored as liver glycogen and/or still be in the gastrointestinal tract.  相似文献   

4.
Carbohydrate ingestion can improve endurance exercise performance. In the past two decades, research has repeatedly reported the performance benefits of formulations comprising both glucose and fructose (GLUFRU) over those based on glucose (GLU). This has been usually related to additive effects of these two monosaccharides on the gastrointestinal tract whereby intestinal carbohydrate absorption is enhanced and discomfort limited. This is only a partial explanation, since glucose and fructose are also metabolized through different pathways after being absorbed from the gut. In contrast to glucose that is readily used by every body cell type, fructose is specifically targeted to the liver where it is mainly converted into glucose and lactate. The ingestion of GLUFRU may thereby profoundly alter hepatic function ultimately raising both glucose and lactate fluxes. During exercise, this particular profile of circulating carbohydrate may induce a spectrum of effects on muscle metabolism possibly resulting in an improved performance. Compared to GLU alone, GLUFRU ingestion could also induce several non-metabolic effects which are so far largely unexplored. Through its metabolite lactate, fructose may act on central fatigue and/or alter metabolic regulation. Future research could further define the effects of GLUFRU over other exercise modalities and different athletic populations, using several of the hypotheses discussed in this review.  相似文献   

5.
The purpose of this study was to examine the influence of a carbohydrate-rich meal on post-prandial metabolic responses and skeletal muscle glycogen concentration. After an overnight fast, eight male recreational/club endurance runners ingested a carbohydrate (CHO) meal (2.5 g CHO?·?kg?1 body mass) and biopsies were obtained from the vastus lateralis muscle before and 3 h after the meal. Ingestion of the meal resulted in a 10.6?±?2.5% (P?<?0.05) increase in muscle glycogen concentration (pre-meal vs post-meal: 314.0?±?33.9 vs 347.3?±?31.3 mmol?·?kg?1 dry weight). Three hours after ingestion, mean serum insulin concentrations had not returned to pre-feeding values (0 min vs 180 min: 45?±?4 vs 143?±?21 pmol?·?l?1). On a separate occasion, six similar individuals ingested the meal or fasted for a further 3 h during which time expired air samples were collected to estimate the amount of carbohydrate oxidized over the 3 h post-prandial period. It was estimated that about 20% of the carbohydrate consumed was converted into muscle glycogen, and about 12 % was oxidized. We conclude that a meal providing 2.5 g CHO?·?kg?1 body mass can increase muscle glycogen stores 3 h after ingestion. However, an estimated 67% of the carbohydrate ingested was unaccounted for and this may have been stored as liver glycogen and/or still be in the gastrointestinal tract.  相似文献   

6.
补充糖对运动员训练和竞技能力的影响   总被引:1,自引:0,他引:1  
运动员饮食中含糖低于“最适宜的”量易诱发过早疲劳。在进行长时间运动时疲劳常因肌糖元排空,其含量低于临界值(50mM/kg湿肌)或血糖浓度降至临界值(3.3mM/L)以下引起,这时运动强度必将显著降低甚或被中止。因此,摄食高糖饮食可增加肌糖元及改善耐力,维持高的训练质量。摄食糖的数量、糖的类型和摄取时间三者都是改善运动后恢复速率的营养策略的组成部分。  相似文献   

7.
Training and nutrition are highly interrelated in that optimal adaptation to the demands of repeated training sessions typically requires a diet that can sustain muscle energy reserves. As nutrient stores (i.e. muscle and liver glycogen) play a predominant role in the performance of prolonged, intense, intermittent exercise typical of the patterns of soccer match-play, and in the replenishment of energy reserves for subsequent training sessions, the extent to which acutely altering substrate availability might modify the training impulse has been a key research area among exercise physiologists and sport nutritionists for several decades. Although the major perturbations to cellular homeostasis and muscle substrate stores occur during exercise, the activation of several major signalling pathways important for chronic training adaptations take place during the first few hours of recovery, returning to baseline values within 24 h after exercise. This has led to the paradigm that many chronic training adaptations are generated by the cumulative effects of the transient events that occur during recovery from each (acute) exercise bout. Evidence is accumulating that nutrient supplementation can serve as a potent modulator of many of the acute responses to both endurance and resistance training. In this article, we review the molecular and cellular events that occur in skeletal muscle during exercise and subsequent recovery, and the potential for nutrient supplementation (e.g. carbohydrate, fat, protein) to affect many of the adaptive responses to training.  相似文献   

8.
In this study, we assessed the influence that pre-exercise glucose ingestion of two concentrations has on the physiological responses of paraplegic athletes. Eight men with paraplegia ingested a drink containing 4% (low) or 11% (high) carbohydrate in a randomized double-blind crossover design, 20 min before exercise. The participants performed wheelchair exercise at 65% of peak oxygen uptake for 1 h followed by a 20 min performance test. During both trials, the physiological responses were similar and indicated steady-state exercise. At the onset of exercise, blood glucose concentrations in both trials increased after carbohydrate ingestion (P < 0.05) before returning to resting values after 20 min of exercise and there were no differences between trials. Free fatty acid concentrations increased from rest to 1 h of exercise in both trials, with a greater increase during the low carbohydrate trial that led to a difference in free fatty acids between trials at the end of the 1 h tests (P < 0.05). There was a tendency for the performance distances and power outputs achieved during the high carbohydrate trial to be greater than those achieved during the low carbohydrate trial (P= 0.08). In conclusion, when paraplegic athletes ingested low and high carbohydrate drinks before exercise, the decline in blood glucose concentrations was similar. The tendency for higher blood glucose concentrations, respiratory exchange ratios and power outputs and lower free fatty acid concentrations (P < 0.05) during the high carbohydrate trial suggests that a higher concentration of carbohydrate in a sports drink might be a better choice for paraplegic athletes.  相似文献   

9.
The aim of the present study was to determine the effect of post-exercise ingestion of a unique, high molecular weight glucose polymer solution, known to augment gastric emptying and post-exercise muscle glycogen re-synthesis, on performance during a subsequent bout of intense exercise. On three randomized visits, eight healthy men cycled to exhaustion at 73.0% (s = 1.3) maximal oxygen uptake (90 min, s = 15). Immediately after this, participants consumed a one-litre solution containing sugar-free flavoured water (control), 100 g of a low molecular weight glucose polymer or 100 g of a very high molecular weight glucose polymer, and rested on a bed for 2 h. After recovery, a 15-min time-trial was performed on a cycle ergometer, during which work output was determined. Post-exercise ingestion of the very high molecular weight glucose polymer solution resulted in faster and greater increases in blood glucose (P < 0.001) and serum insulin (P < 0.01) concentrations than the low molecular weight glucose polymer solution, and greater work output during the 15-min time-trial (164.1 kJ, s = 21.1) than both the sugar-free flavoured water (137.5 kJ, s = 24.2; P < 0.05) and the low molecular weight glucose polymer (149.4 kJ, s = 21.8; P < 0.05) solutions. These findings could be of practical importance for athletes wishing to optimize performance by facilitating rapid re-synthesis of the muscle glycogen store during recovery following prolonged sub-maximal exercise.  相似文献   

10.
The development of fatigue during exercise and the subsequent onset of exhaustion occur earlier in the heat than in cooler environments. The underlying mechanisms responsible for the premature development of fatigue in the heat have yet to be clearly identified. However, the proposed mechanisms include metabolic, cardiovascular and central nervous system perturbations, together with an elevated core temperature. Fluid ingestion is one of three strategies that have been shown to be successful in enhancing the performance of endurance exercise in the heat, with the other interventions being precooling and acclimatization. However, like the development of fatigue in the heat, the mechanisms by which fluid ingestion allows for improved exercise performance remain unclear. We propose that fluid ingestion enhances exercise performance in the heat by increasing the heat storage capacity of the body. We suggest that the thermoregulatory, metabolic and cardiovascular alterations that occur as a result of this increased heat storage capacity contribute to performance enhancement when fluid is ingested during exercise heat stress.  相似文献   

11.
The development of fatigue during exercise and the subsequent onset of exhaustion occur earlier in the heat than in cooler environments. The underlying mechanisms responsible for the premature development of fatigue in the heat have yet to be clearly identified. However, the proposed mechanisms include metabolic, cardiovascular and central nervous system perturbations, together with an elevated core temperature. Fluid ingestion is one of three strategies that have been shown to be successful in enhancing the performance of endurance exercise in the heat, with the other interventions being precooling and acclimatization. However, like the development of fatigue in the heat, the mechanisms by which fluid ingestion allows for improved exercise performance remain unclear. We propose that fluid ingestion enhances exercise performance in the heat by increasing the heat storage capacity of the body. We suggest that the thermoregulatory, metabolic and cardiovascular alterations that occur as a result of this increased heat storage capacity contribute to performance enhancement when fluid is ingested during exercise heat stress.  相似文献   

12.
补充糖对运动员训练和竞技能力的影响   总被引:8,自引:0,他引:8  
运动员饮食中含糖低于“最适宜的”量易诱发过早疲劳。在进行长时间运动时疲劳常因肌糖元排空,其含量低于临界值(50mM/kg湿肌)或血糖浓度降至临界值(3.3mM/L)以下引起,这时运动强度必将显著降低甚或被中止。因此,摄食高糖饮食可增加肌糖元及改善耐力,维持高的训练质量。摄食糖的数量、糖的类型和摄取时间三者都是改善运动后恢复速率的营养策略的组成部分。  相似文献   

13.
This study examined the effect of carbohydrate ingestion on metabolic and performance-related responses during and after a simulated 1h cycling time trial. Eight trained male cyclists (VO 2 peak = 66.5ml kg -1 min -1 ) rode their own bicycles mounted on a windload simulator to imitate real riding conditions. At a self-selected maximal pace, the cyclists performed two 1h rides (separated by 7 days) and were fed either an 8% carbohydrate or placebo solution. The beverages were administered 25 min before (4.5ml kg -1 ) and at the end (4.5ml kg -1 ) of the ride. With carbohydrate feeding, plasma glucose tended (P = 0.21) to rise before the time trial. Compared with rest, the plasma glucose concentration decreased significantly (P < 0.05) at the end of both rides, with no statistically significant difference being observed between treatments. Thereafter, plasma glucose increased significantly (P < 0.05) at 15 and 30 min into recovery, and was significantly higher at 30 min during the carbohydrate trial compared with the placebo trial. No significant changes in plasma free fatty acids were observed during the ride. However, a significant increase (P < 0.05) in free fatty acids was found at 15 and 30 min into recovery, with no difference between trials. Mean power output was significantly (P < 0.05) greater during the carbohydrate compared with the placebo trial (mean - S.E.: 277-3 and 269-3W, respectively). The greater distance covered in the carbohydrate compared with the placebo trial (41.5-1.06 and 41.0–1.06km, respectively; P < 0.05) was equivalent to a 44s improvement. We conclude that pre-exercise carbohydrate ingestion significantly increases endurance performance in trained cyclists during a 1h simulated time trial. Although the mechanism for this enhancement in performance with carbohydrate ingestion cannot be surmised from the present results, it could be related to a higher rate of carbohydrate oxidation, or to favourable effects of carbohydrate ingestion on the central component of fatigue.  相似文献   

14.
The purpose of this study was to assess the effect of carbohydrate (CHO) feeding during different periods of two 90-min cycling bouts (the first bout began at 09:00?h and the second bout began at 13:30 h) at 60% maximal oxygen uptake(VO2max) on saliva flow rate and saliva immunoglobulin A (sIgA) responses to the second exercise bout. The study consisted of three investigations: carbohydrate supplementation during (1) the first hour of the recovery interval (CHO-REC), (2) during the first bout of exercise and (3) during the second bout of exercise. Each investigation included two trials completed in a counterbalanced order and separated by at least 4 days. Participants consumed a lemon-flavoured 10% w/v carbohydrate beverage or placebo (22 ml.kg-1 body mass) in the first hour of the recovery interval (n=8) and 500 ml just before exercise, followed by 250 ml every 20 min during exercise in the first (n=9) and second exercise bouts (n=9). Timed unstimulated saliva samples were collected at 10 min before exercise, after 48-50 min of exercise and during the last 2 min of exercise, at 1 h post exercise, 2 h post exercise (first exercise bout only), and 18 h post exercise (second exercise bout only). Venous blood samples were taken 5 min before exercise and immediately after exercise for both exercise bouts in all trials. The main findings of the present study were as follows. First, carbohydrate ingestion during both exercise bouts, but not during the recovery interval, better maintained plasma glucose concentrations and attenuated the increase in plasma adrenaline and cortisol concentrations after the second exercise bout compared with placebo. Second, carbohydrate feeding had no effect on saliva flow rate and sIgA secretion rate compared with placebo. Third, saliva flow rate and sIgA concentration returned to pre-exercise bout 1 values within 2 h in all trials. Fourth, there was no delayed effect of exercise on oral immunity. These findings suggest that carbohydrate ingestion during the first or second bout of exercise, but not during the recovery interval, is likely to better maintain plasma glucose concentrations and attenuate the responses of plasma stress hormones to a second exercise bout than ingestion of fluid alone. Two bouts of 90 min cycling at 60% VO2max on the same day appears to inhibit saliva flow rate during the second exercise bout but does not alter sIgA transcytosis. Our results show that carbohydrate ingestion during any period of two prolonged exercise bouts does not induce different effects on oral immunity compared with placebo.  相似文献   

15.
Abstract

The synergistic stimulating effect of combined intake of carbohydrate and protein on plasma insulin concentration has been reported previously. However, it remains unclear whether the amount of protein ingested after exercise affects the concentrations of plasma insulin and amino acids. This study of trained men compared the effects of post-exercise co-ingestion of carbohydrate plus different amounts of whey protein hydrolysates (WPHs) with carbohydrate alone on (1) blood biochemical parameters of carbohydrate metabolism during the post-exercise phase, and (2) endurance performance. Eight trained men exercised continuously for 70 min. Immediately after exercise and 30, 60, 90, and 120 min later, the participants received supplements containing: (1) 17.5 g carbohydrate, (2) 3.0 g WPHs and 17.5 g carbohydrate (L-WPH), or (3) 8.0 g WPHs and 17.5 g carbohydrate (H-WPH). After a 2-h recovery period, the participants performed an endurance performance test. The concentrations of blood glucose were lower and plasma insulin significantly higher in the H-WPH trial compared with the carbohydrate trial. The concentrations of plasma amino acids were increased in a dose-dependent manner following ingestion of different amounts of WPHs with carbohydrate. Endurance performance was not significantly different between the three trials. Co-ingestion of carbohydrate and H-WPH was more effective than ingestion of carbohydrate alone for stimulating insulin secretion and increasing the availability of plasma amino acids. These results suggest that plasma concentrations of amino acids during the recovery period are determined by the amount of dietary protein ingested, and that it is necessary to increase the concentration of plasma amino acids above a certain level to stimulate insulin secretion.  相似文献   

16.
Abstract

High-intensity intermittent exercise substantially increases muscle glucose transport, which is thought to be the rate-limiting step for glycogen synthesis. In the present study, we compared muscle glycogen supercompensation after high-intensity intermittent exercise with that observed after low-intensity continuous exercise in rats. Four- to five-week-old male Sprague-Dawley rats performed either low-intensity swimming (240 min of swimming exercise with a weight equivalent to 1% of their body mass; LOW) or high-intensity swimming (twenty 30-s swimming bouts with 30 s rest between bouts with a weight equivalent to 16% of their body mass; HIGH) to deplete muscle glycogen. After the glycogen-depleting exercise, rats were given a rodent chow diet plus 5% glucose solution for 6 h or 24 h. Immediately after the two types of exercise, glycogen concentration in rat epitrochlearis muscle was similarly depleted. After the 6-h and 24-h recovery periods, muscle glycogen concentrations in both the HIGH and LOW groups were restored well above the normally fed state. Furthermore, muscle glycogen accumulation in the HIGH group for the 6-h and 24-h recovery periods was not significantly different from that observed in the LOW group. The high-intensity intermittent swimming exercise also induced muscle glycogen supercompensation in well-trained rats that had performed 7 days of endurance swimming training (6 h per day). Our results indicate that high-intensity intermittent exercise as well as low-intensity continuous exercise could induce glycogen supercompensation in rat skeletal muscle.  相似文献   

17.
Nutrition for endurance sports: marathon, triathlon, and road cycling   总被引:2,自引:2,他引:0  
Endurance sports are increasing in popularity and athletes at all levels are looking for ways to optimize their performance by training and nutrition. For endurance exercise lasting 30 min or more, the most likely contributors to fatigue are dehydration and carbohydrate depletion, whereas gastrointestinal problems, hyperthermia, and hyponatraemia can reduce endurance exercise performance and are potentially health threatening, especially in longer events (>4 h). Although high muscle glycogen concentrations at the start may be beneficial for endurance exercise, this does not necessarily have to be achieved by the traditional supercompensation protocol. An individualized nutritional strategy can be developed that aims to deliver carbohydrate to the working muscle at a rate that is dependent on the absolute exercise intensity as well as the duration of the event. Endurance athletes should attempt to minimize dehydration and limit body mass losses through sweating to 2-3% of body mass. Gastrointestinal problems occur frequently, especially in long-distance races. Problems seem to be highly individual and perhaps genetically determined but may also be related to the intake of highly concentrated carbohydrate solutions, hyperosmotic drinks, as well as the intake of fibre, fat, and protein. Hyponatraemia has occasionally been reported, especially among slower competitors with very high intakes of water or other low sodium drinks. Here I provide a comprehensive overview of recent research findings and suggest several new guidelines for the endurance athlete on the basis of this. These guidelines are more detailed and allow a more individualized approach.  相似文献   

18.
The purpose of this study was to assess the effect of carbohydrate (CHO) feeding during different periods of two 90-min cycling bouts (the first bout began at 09:00?h and the second bout began at 13:30?h) at 60% maximal oxygen uptake ([Vdot]O2max) on saliva flow rate and saliva immunoglobulin A (sIgA) responses to the second exercise bout. The study consisted of three investigations: carbohydrate supplementation during (1) the first hour of the recovery interval (CHO-REC), (2) during the first bout of exercise and (3) during the second bout of exercise. Each investigation included two trials completed in a counterbalanced order and separated by at least 4 days. Participants consumed a lemon-flavoured 10% w/v carbohydrate beverage or placebo (22?ml?·?kg?1 body mass) in the first hour of the recovery interval (n = 8) and 500?ml just before exercise, followed by 250?ml every 20?min during exercise in the first (n = 9) and second exercise bouts (n = 9). Timed unstimulated saliva samples were collected at 10?min before exercise, after 48?–?50?min of exercise and during the last 2?min of exercise, at 1?h post exercise, 2?h post exercise (first exercise bout only), and 18?h post exercise (second exercise bout only). Venous blood samples were taken 5?min before exercise and immediately after exercise for both exercise bouts in all trials. The main findings of the present study were as follows. First, carbohydrate ingestion during both exercise bouts, but not during the recovery interval, better maintained plasma glucose concentrations and attenuated the increase in plasma adrenaline and cortisol concentrations after the second exercise bout compared with placebo. Second, carbohydrate feeding had no effect on saliva flow rate and sIgA secretion rate compared with placebo. Third, saliva flow rate and sIgA concentration returned to pre-exercise bout 1 values within 2?h in all trials. Fourth, there was no delayed effect of exercise on oral immunity. These findings suggest that carbohydrate ingestion during the first or second bout of exercise, but not during the recovery interval, is likely to better maintain plasma glucose concentrations and attenuate the responses of plasma stress hormones to a second exercise bout than ingestion of fluid alone. Two bouts of 90?min cycling at 60% [Vdot]O2max on the same day appears to inhibit saliva flow rate during the second exercise bout but does not alter sIgA transcytosis. Our results show that carbohydrate ingestion during any period of two prolonged exercise bouts does not induce different effects on oral immunity compared with placebo.  相似文献   

19.
人参皂甙Rg1能调节机体运动中及运动后的能量代谢,然而其机制还没有阐明。本文以大鼠为实验对象,主要从机体运动后的糖原合成与运动中葡萄糖摄取方面来探讨人参皂甙Rg1的作用机制。实验结果表明,人参皂甙Rg1能够通过增强运动后糖原合成酶的活性与运动中GLUT4的转位来调节机体糖代谢。  相似文献   

20.
The aim of this study was to determine the effects of a single bout of endurance exercise on subsequent strength performance. Eight males with a long history of resistance training performed isokinetic, isometric and isotonic leg extension strength tests 8 and 32 h after 50 min of cycle ergometry at 70-110% of critical power. The participants also completed a control condition in which no cycling was performed. Plasma lactate and ammonia were measured before and immediately after each strength test. Isokinetic, isometric and isotonic leg extension torques were not significantly different 8 or 32 h after endurance exercise compared with the control condition (P > 0.05). A large (50.3%), but not statistically significant, increase in plasma ammonia was evident during the strength tests performed 8 h after endurance exercise, while a significant (P < 0.05) increase in ammonia was also seen 32 h after endurance exercise. No significant changes in plasma ammonia were evident in the control condition. Our results suggest that leg extension strength was not compromised by an earlier bout of endurance cycling. However, metabolic activity during the strength tests might have been altered by the preceding bout of endurance exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号