首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study reports an adaptive digital learning project, Scientific Concept Construction and Reconstruction (SCCR), and examines its effects on 108 8th grade students' scientific reasoning and conceptual change through mixed methods. A one‐group pre‐, post‐, and retention quasi‐experimental design was used in the study. All students received tests for Atomic Achievement, Scientific Reasoning, and Atomic Dependent Reasoning before, 1 week after, and 8 weeks after learning. A total of 18 students, six from each class, were each interviewed for 1 hour before, immediately after, and 2 months after learning. A flow map was used to provide a sequential representation of the flow of students' scientific narrative elicited from the interviews, and to further analyze the level of scientific reasoning and conceptual change. Results show students' concepts of atoms, scientific reasoning, and conceptual change made progress, which is consistent with the interviewing results regarding the level of scientific reasoning and quantity of conceptual change. This study demonstrated that students' conceptual change and scientific reasoning could be improved through the SCCR learning project. Moreover, regression results indicated students' scientific reasoning contributed more to their conceptual change than to the concepts students held immediately after learning. It implies that scientific reasoning was pivotal for conceptual change and prompted students to make associations among new mental sets and existing hierarchical structure‐based memory. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47: 91–119, 2010  相似文献   

3.
This study examined the relationship between students' (N = 229) concepts of size and scale and students' achievement in science and mathematics over a 3-year period. Size and scale are considered one of the big ideas in science that permeates disparate science and mathematics content areas, yet little is known about the relationship between students' conceptualization of size and scale and students' achievement in science and mathematics. The study used a modified panel longitudinal design to follow the same class of students over a 3-year period. The goal was to explore whether understandings of size and scale are related to achievement in mathematics and science. Results indicated a strong positive significant relationship existed between students' understanding of size and scale and students' science achievement in grades 5 and 8. There was a positive significant relationship between students' concepts of size and scale and students' mathematics achievement in grades 5, 6, 7, and 8. An examination of the relationships is included as well as a discussion of the integration of crosscutting concepts into science and mathematics instruction as a way to support deep learning.  相似文献   

4.
Carefully scaffolded dynamic visualizations have potential to promote science learning for all students, including English language learners (ELLs) who are often underserved in mainstream science classrooms, but little is known about how to design effective scaffolding to support such diverse students' learning with dynamic visualizations. This study investigated how two forms of scaffolding embedded in dynamic visualizations, expert guidance and generating guidance, can foster ELLs' and non-ELLs' understanding of unobservable scientific phenomena. While interacting with dynamic visualizations, students in the expert guidance condition were provided with scientifically accurate explanations to interpret visual representations, whereas students in the generating guidance condition were prompted to generate their own explanations using visual representations. The results show the significant advantage of generating guidance over expert guidance for both ELLs and non-ELLs, although students in the generating guidance condition did not receive feedback on their generated artifacts. Analyses of video data and log data from 40 pairs revealed that each form of scaffolding affected the quantity and quality of linguistically diverse students' conversations. The results show that generating guidance enabled students, particularly ELLs, to engage in discourse-rich practices to evaluate various sources of evidence from the visualization and compare the evidence to their alternative ideas to develop a coherent understanding of the target concepts. This study shows the unique benefits of generating guidance as an effective strategy to support linguistically diverse students' science learning with dynamic visualizations.  相似文献   

5.
This study examined the degree to which individual differences in students' (N = 232) concepts of size and scale are explained by factors such as students' innate sense of number, out‐of‐school science experiences, exposure to size and scale instruction, gender identities, and racial/ethnic identities. There is increasing emphasis being placed on the use of crosscutting concepts to promote deep learning in science. A multiple linear regression indicated students' racial/ethnic identities, experiences with scale outside of school, and exposure to size and scale instruction significantly added to the prediction model. Results from this study can both inform the movement toward incorporating crosscutting concepts into pedagogy as well as inform educators, administrators, and other stakeholders of the factors that may shape students' understanding of the cross‐cutting concept of scale, proportion, and quantity.  相似文献   

6.
Advancing reflective judgment through Socioscientific Issues   总被引:1,自引:0,他引:1  
The purpose of this investigation was to explore possible relationships between Socioscientific Issues instruction and students' development of reflective judgment. The usefulness of the Reflective Judgment Model as a tool for assessing the value of SSI is established in the parallels that can be drawn between them. Both involve ill‐structured problems requiring evidence‐based reasoning subject to differing interpretations by students, and both require examination, analysis and the blending of scientific and normative evidence, as students use that evidence to support a reasoned position. Results demonstrated both qualitative evidence revealing more sophisticated and nuanced epistemological stances toward higher stages of reflective judgment, as well as statistically significant gains within treatment groups with a moderately large effect size. Theoretical implications for advancing students' epistemological beliefs about evidence‐based argumentation and pedagogical implications for rethinking how to connect science with topics that are fundamentally meaningful to students are discussed. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 46: 74–101, 2009  相似文献   

7.
The purpose of this mixed‐method study was to investigate the changes in high school students' perceptions of fluency with innovative technologies (IT) and the levels of students' scientific inquiry abilities as a result of engaging students in long‐term scientific research projects focusing on community‐based environmental issues. Over a span of 3 years, a total of 125 ninth‐ through twelfth‐grade students participated in this study. A project‐specific Likert‐scale survey consisting of three parts (fluency with All Technologies, GPS/GIS, and CBL2/EasyData) was administered to all students as a pre‐ and post‐test. At the end of the study, 45 students were randomly interviewed and asked to elaborate on the changes in their perceptions of fluency with IT. The results indicated statistically significant increases (p < 0.001) in students' perceptions of their fluency with IT. Qualitative analysis of students' interview results corroborated the statistical findings of students' changes in perceptions of their fluency with IT. Students' research papers based on the environmental studies conducted at the interface of classroom and community were analyzed using the Scientific Inquiry Rubrics, which consist of 11 criteria developed by the researchers. Results indicated the students' abilities to conduct scientific inquiry for 7 out of 11 criteria were at the proficient level. This study clearly points to the correlation between the development of IT fluency and ability levels to engage in scientific inquiry based on respective competencies. Ultimately, this research study recommends that students' IT fluency ought to be developed and assessed concurrently with an emphasis on contemporary higher order scientific inquiry abilities. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 48: 94–116, 2011  相似文献   

8.
The classic film “Powers of Ten” is often employed to catalyze the building of more accurate conceptions of scale, yet its effectiveness is largely unknown. This study examines the impact of the film on students’ concepts of size and scale. Twenty-two middle school students and six science teachers participated. Students completed pre- and post-intervention interviews and a Scale Card Sorting (SCS) task; all students observed the film “Powers of Ten.” Experienced teachers’ views on the efficacy of the film were assessed through a short written survey. Results showed that viewing the film had a positive influence on students’ understandings of powers of ten and scale. Students reported that they had more difficulty with sizes outside of the human scale and found small scales more difficult to conceptualize than large scales. Students’ concepts of relative size as well as their ability to accurately match metric sizes in scientific notation to metric scale increased from pre- to post-viewing of the film. Experienced teachers reported that the film was a highly effective tool. Teachers reported that the design of the film that allowed students to move slowly from the human scale to the large and small scales and then quickly back again was effective in laying the foundation for understanding the different scales. This material is based upon work supported by the National Science Foundation under Grants No. 0411656 and 0507151.  相似文献   

9.
This study investigated the development in students' nature of science (NOS) views in the context of an explicit inquiry‐oriented instructional approach. Participants were 18 seventh‐grade students who were taught by a teacher with “appropriate” knowledge about NOS. The intervention spanned about 3 months. During this time, students were engaged in three inquiry‐oriented activities that were followed by reflective discussions of NOS. The study emphasized the tentative, empirical, inferential, and creative aspects of NOS. An open‐ended questionnaire, in conjunction with semi‐structured interviews, was used to assess students' views before, during, and after the intervention. Before instruction, the majority of students held naïve views of the four NOS aspects. During instruction, the students acquired more informed and “intermediary” views of the NOS aspects. By the end of the intervention, the students' views of the NOS aspects had developed further still into informed and “intermediary.” These findings suggest a developmental model in which students' views develop along a continuum during which they pass through intermediary views to reach more informed views. Implications for teaching and learning of NOS are discussed. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 45: 470–496, 2008  相似文献   

10.
This study investigated the potential of students' written and oral questions both as an epistemic probe and heuristic for initiating collaborative argumentation in science. Four classes of students, aged 12–14 years from two countries, were asked to discuss which of two graphs best represented the change in temperature as ice was heated to steam. The discussion was initiated by asking questions about the phenomenon. Working in groups (with members who had differing viewpoints) and guided by a set of question prompts, an argument sheet, and an argument diagram, students discussed contrasting arguments. One group of students from each class was audiotaped. The number of questions written, the concepts addressed, and the quality of written arguments were then scored. A positive correlation between these factors was found. Discourse analysis showed that the initial focus on questions prompted students to articulate their puzzlement; make explicit their claims and (mis)conceptions; identify and relate relevant key concepts; construct explanations; and consider alternative propositions when their ideas were challenged. Productive argumentation was characterized by students' questions which focused on key ideas of inquiry, a variety of scientific concepts, and which made explicit reference to the structural components of an argument. These findings suggest that supporting students in productive discourse is aided by scaffolding student questioning, teaching the criteria for a good argument, and providing a structure that helps them to organize and verbalize their arguments. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:883–908, 2010  相似文献   

11.
This research investigated the effect of reflective discussions following inquiry‐based laboratory activities on students' views of the tentative, empirical, subjective, and social aspects of nature of science (NOS). Thirty‐eight grade six students from a Lebanese school participated in the study. The study used a pretest–posttest control‐group design and focused on collecting mainly qualitative data. During each laboratory session, students worked in groups of two. Later, experimental group students answered open‐ended questions about NOS then engaged in reflective discussions about NOS. Control group students answered open‐ended questions about the content of the laboratory activities then participated in discussions of results of these activities. Data sources included an open‐ended questionnaire used as pre‐ and posttest, answers to the open‐ended questions that experimental group students answered individually during every session, transcribed videotapes of the reflective discussions of the experimental group, and semi‐structured interviews. Results indicated that explicit and reflective discussions following inquiry‐based laboratory activities enhanced students' views of the target NOS aspects more than implicit inquiry‐based instruction. Moreover, implicit inquiry‐based instruction did not substantially enhance the students' target NOS views. This study also identified five major challenges that students faced in their attempts to change their NOS views. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1229–1252, 2010  相似文献   

12.
This study used qualitative and quantitative approaches to evaluate the effectiveness of self‐learning modules (SLMs) developed to facilitate and individualize students' learning of basic medical sciences. Twenty physiology and nineteen microanatomy SLMs were designed with interactive images, animations, narrations, and self‐assessments. Of 41 medical students, 40 students voluntarily completed a questionnaire with open‐ended and closed‐ended items to evaluate students' attitudes and perspectives on the learning value of SLMs. Closed‐ended items were assessed on a five‐point Likert scale (5 = high score) and the data were expressed as mean ± standard deviation. Open‐ended questions further evaluated students' perspectives on the effectiveness of SLMs; student responses to open‐ended questions were analyzed to identify shared patterns or themes in their experience using SLMs. The results of the midterm examination were also analyzed to compare student performance on items related to SLMs and traditional sessions. Students positively evaluated their experience using the SLMs with an overall mean score of 4.25 (SD ± 0.84). Most students (97%) indicated that the SLMs improved understanding and facilitated learning basic science concepts. SLMs were reported to allow learner control, to help in preparation for subsequent in‐class discussion, and to improve understanding and retention. A significant difference in students' performance was observed when comparing SLM‐related items with non‐SLM items in the midterm examination (P < 0.05). In conclusion, the use of SLMs in an integrated basic science curriculum has the potential to individualize the teaching and improve the learning of basic sciences. Anat Sci Educ 3: 219–226, 2010. © 2010 American Association of Anatomists.  相似文献   

13.
In response to extensive research exposing students' poor understanding of the particle theory of matter, this article argues that the conceptual framework within which the theory is introduced could be a limiting factor. The standard school particle model is characterized as operating within a “solids, liquids, and gases” framework. Drawing on an analysis of scientific ideas on matter and research into students' understanding, issues arising from the framework are identified which could contribute towards students' well known difficulties. The analysis leads to the proposal for a particle model based within the framework of the concept of a substance. Results from two exploratory studies using the substance‐based particle model with children (ages 9–10) in two contrasting elementary schools in England are then reported. After a short teaching intervention with a class in each school, individual interviews were held with a sample of 12 students from each class. Data were collected on students' understanding of substances coexisting in different room temperature states and phenomena involving changes of state and mixing. The results gave useful feedback on the specification of the model and its teaching. Overall the students' engagement with the particle ideas was encouraging and suggests a larger scale testing of the substance‐based model is merited. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:130–150, 2010  相似文献   

14.
15.
Sexual health is a controversial science topic that has received little attention in the field of science education, despite its direct relevance to students' lives and communities. Moreover, research from other fields indicates that a great deal remains to be learned about how to make school learning about sexual health influence the real‐life choices of students. In order to provide a more nuanced understanding of young people's decision‐making, this study examines students' talk about sexual health decision‐making through the lens of identities. Qualitative, ethnographic research methods with twenty 12th grade students attending a New York City public school are used to illustrate how students take on multiple identities in relation to sexual health decision‐making. Further, the study illustrates how these identities are formed by various aspects of students' lives, such as school, family, relationships, and religion, and by societal discourses on topics such as gender, individual responsibility, and morality. The study argues that looking at sexual health decision‐making—and at decision‐making about other controversial science topics—as tied to students' identities provides a useful way for teachers and researchers to grasp the complexity of these decisions, as a step toward creating curriculum that influences them. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47:742–762, 2010  相似文献   

16.
Contextualizing science instruction involves utilizing students' prior knowledge and everyday experiences as a catalyst for understanding challenging science concepts. This study of two middle school science classrooms examined how students utilized the contextualizing aspects of project‐based instruction and its relationship to their science learning. Observations of focus students' participation during instruction were described in terms of a contextualizing score for their use of the project features to support their learning. Pre/posttests were administered and students' final artifacts were collected and evaluated. The results of these assessments were compared with students' contextualizing scores, demonstrating a strong positive correlation between them. These findings provide evidence to support claims of contextualizing instruction as a means to facilitate student learning, and point toward future consideration of this instructional method in broader research studies and the design of science learning environments. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 45: 79–100, 2008  相似文献   

17.
In this study, we analyzed the quality of students' written scientific explanations found in notebooks and explored the link between the quality of the explanations and students' learning. We propose an approach to systematically analyzing and scoring the quality of students' explanations based on three components: claim, evidence to support it, and a reasoning that justifies the link between the claim and the evidence. We collected students' science notebooks from eight science inquiry‐based middle‐school classrooms in five states. All classrooms implemented the same scientific‐inquiry based curriculum. The study focuses on one of the implemented investigations and the students' explanations that resulted from it. Nine students' notebooks were selected within each classroom. Therefore, a total of 72 students' notebooks were analyzed and scored using the proposed approach. Quality of students' explanations was linked with students' performance in different types of assessments administered as the end‐of‐unit test: multiple‐choice test, predict‐observe‐explain, performance assessment, and a short open‐ended question. Results indicated that: (a) Students' written explanations can be reliably scored with the proposed approach. (b) Constructing explanations were not widely implemented in the classrooms studied despite its significance in the context of inquiry‐based science instruction. (c) Overall, a low percentage of students (18%) provided explanations with the three expected components. The majority of the sample (40%) provided only claims without any supporting data or reasoning. And (d) the magnitude of the correlations between students' quality of explanations and their performance, were all positive but varied in magnitude according to the type of assessment. We concluded that engaging students in the construction of high quality explanations may be related to higher levels of student performance. The opportunities to construct explanations in science‐inquiry based classrooms, however, seem to be limited. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 583–608, 2010  相似文献   

18.
The case‐based computerized laboratory (CCL) is a chemistry learning environment that integrates computerized experiments with emphasis on scientific inquiry and comprehension of case studies. The research objective was to investigate chemical understanding and graphing skills of high school honors students via bidirectional visual and textual representations in the CCL learning environment. The research population of our 3‐year study consisted of 857 chemistry 12th grade honors students from a variety of high schools in Israel. Pre‐ and postcase‐based questionnaires were used to assess students' graphing and chemical understanding–retention skills. We found that students in the CCL learning environment significantly improved their graphing skills and chemical understanding–retention in the post‐ with respect to the prequestionnaires. Comparing the experimental students to their non‐CCL control peers has shown that CCL students had an advantage in graphing skills. The CCL contribution was most noticeable for experimental students of relatively low academic level who benefit the most from the combination of visual and textual representations. Our findings emphasize the educational value of combining the case‐based method with computerized laboratories for enhancing students' chemistry understanding and graphing skills, and for developing their ability to bidirectionally transfer between textual and visual representations. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 45: 219–250, 2008.  相似文献   

19.
This longitudinal study investigated the progression in junior high school (JHS) students' conceptions of the structure of matter while studying a new instructional approach dealing with “Materials.” In particular, we studied the progression of students' learning along two dimensions: (a) the conceptual model; and (b) the context of application. Students were asked to draw the structure of several materials and to write their explanations about the structure of these materials in questionnaires administered five times during a 3‐year period. Results indicate students' progression in their microscopic conceptualization of materials. Toward the end of the instruction about 85% of the students used a microscopic model in their representations, and 36% were able to give a molecular model. About 83% of the students retained a microscopic model. Different profiles of JHS students' progression in the conception of the structure of matter were identified. The study suggests that a long‐term development of the particulate model requires: (a) constructing a solid foundation of knowledge about microscopic structure of materials; and (b) a spiral instruction. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 45: 132–152, 2008  相似文献   

20.
Teacher judgments have been identified as a primary source of information regarding student academic achievement. Research examining the accuracy of teachers' judgments in assessing students' academic abilities has shown relatively high accuracy. However, previous studies have relied primarily on norm‐referenced measures to obtain estimates of students' achievement in reading and mathematics. Recent developments in the assessment of students' academic skills, such as Curriculum‐Based Measurement (CBM), provide a direct estimate of students' skill levels in basic areas such as reading and mathematics. The purpose of the present study was to examine the extent to which teachers' perceptions of students' reading and mathematics skills corresponded to direct estimates of students' reading and mathematics skills. Two second‐grade teachers estimated the reading and mathematics skills of 33 second‐grade students. Results of this study indicated that teachers were not accurate in assessing their students' mathematics functioning. Teachers were more accurate in assessing the occurrence of Mastery mathematics levels in basic addition, but were very inaccurate in assessing the occurrence of Mastery, Instructional, or Frustrational mathematics levels in all other skills assessed. In reading, teachers' judgment accuracy varied as a function of grade‐level material and instructional level. Specifically, teachers experienced considerable difficulty accurately identifying students who were reading at a Mastery level in grade‐level or above‐grade‐level material. © 2006 Wiley Periodicals, Inc. Psychol Schs 43: 247–265, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号