首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由于三角公式比较多,变换灵活多样,解答此类题时,考虑选择恰当的变换就能使复杂问题简单化,收到事半功倍之效果。下面介绍几种常用的三角变换技巧.变换三角函数名称一般地,在一个三角函数式中,若含有多种三角函数,则常把“切割”统一变为“弦”,减少函数种类,易于变形.例1.求tan20°+4sin20°的值.解:原式=sin20°+4sin20°·cos20°cos20°=sin20°+2sin40°cos20°=(sin20°+sin40°)+sin40°cos20°=2sin30°·cos10°+sin40°cos20°=sin80°+sin40°cos20°=2sin60°·cos20°cos20°=2sin60°=3√.点评:本题的解题关键有二:一是把tan2…  相似文献   

2.
1995年全国高考数学试题理科(22)题:求 sin~2 20°+cos~2 50°+sin20°cos50°的值.答案为3/4,又当我们将式中的20°和50°分别换为10°和40°,奇妙地发现 sin~2 10°+cos~2 40°+sin10°cos40°的值仍为3/4,由此引起我们思考:20°,50°,与10°,40°之间有什么关系呢?容易发现等差关系50°-20°=40°-10°=30°.是否有一般性呢?再求 sin~2 19°+cos~2 49°+sin19°cos49°的值.解:原式=1/2(1-cos38°)+1/2(1+cos98°)+sin19°cos49°  相似文献   

3.
在平面三角中,有不少如cos20°cos40°cos80°,sin20°sin40°sin80°,tg10°tg50°tg70°,…之类的求值问题。它们具有同一形式:f(a)·f(60°-a)·f(60°+a)。这里f(x)表示某个三角函数。对这类求值问题我们将利用三倍角公式的变形来寻求统一的处理。  相似文献   

4.
类比联想是发挥解题灵感的科学向导,是一种重要的解题方法。通过类比,启迪思维,产生联想,既能沟通知识的内在联系,系统深化所学知识,又能培养学生的观察分析能力,数学猜想能力,同时还可激发学生的学习兴趣。本文就类比联想的途径和功能对数学能力的培养谈点看法。 一、对题目的结构进行类比联想,有助于发现问题的最优解法。 例1 求sin~220°+cos~280°+3~(1/2)cos80°sin20°的值。 分析:原式可变为sin~220°+sin~210°-2sin20°sin1O°cosl50°,且10°+20°+150°=180°  相似文献   

5.
绝妙解法     
题目求 sin~210°+cos~240°+sin10°cos40°的值.解△ABC 中,由余弦定理和正弦定理,有a~2=b~2+c~2-2bccosA, (1)(a/(sina))=(b/(sinB))=(c/(sinC))=k (2)由 a=ksinA,b=ksinB,c=ksinC 代入(1)得sin~2A=sin~2B+sin~2C-2sinBsinC·cosA. (3)  相似文献   

6.
通过构造数学模型来解决三角问题,目的在于培养学生观察、分析、联想的思想方法以及创造性思维能力. 例1 (1991年全国高中联赛题)求cos210°+cos250°-sin40°sin 80°的值. 导析:看到此题,学生自然会联想到课本中的例题:求sin210°+cos240°+sin 10°cos 40°的值.他们会通过降次、和差化积来解决这个问题.这时,我们可引导学生观察,揭示其本质.注意到sin 40°=cos 50°,sin 80°=cos 10°,且问题关于cos 10°,  相似文献   

7.
三角恒等变形,公式繁多,技巧性强,不易熟练掌握.但如果在“变”字上下功夫,常可抓住关键,找到解题途径.一、变角对已知角进行和、差、倍、半角等各种形式的合理变换,有利于某些三角函数化简求值.例1(1997年高考题)sin7°+cos15°sin8°cos7°+sin15°sin8°的值为.解:由7°=15°-8°,利用差角正弦和余弦公式,化简得原式=sin15°cos15°=1-cos30°sin30°=2-3.练习(1992年高考题)已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,求sin2α的值.二、变项对于某些三角函数化简,求值问题,若添项或拆项等,则往往能一举成功.例2(1994年高考题)…  相似文献   

8.
许多含正、余弦的三角函数式求值都是成对(函数名称不同,但结构形式相同,出现的,而这些成对出现的题往往有一定的内在联系,相互依赖。利用三角函数的这一特性,找出所给三角函数式的配对式,通过所给三角函数式与其配对式的加、减、乘运算,常能顺利求得结果,如何寻找配对式呢? 例1:求+50sin10sin70cos20sin的值。 分析:设+=50sin10sin70cos20sinA;+=50cos10cos70sin20cosB +=+=+40cos140cos90sinBA① +=+=-40cos2160cos50sinAB② ①-②得:41A,21A2==即 例2 求++40cos160cos160cos80cos80cos40cos的值。 分析 设:设 A=cos40°cos80°+cos80…  相似文献   

9.
题化简sin~2 20° cos~2 50° sin20°cos50°.我想出了这道题的两个解法:解法1 sin~2 20° cos~2 50° sin20°cos50° =1-cos40°/2 1 cos100°/2 cos20°-sin30°/2=2-sin30° (cos100° cos20°)-cos40°/2  相似文献   

10.
公式“sin2α+cos2α=1”是高中三角函数问题中一个十分重要的公式,它是同角三角函数基本关系式之一,具有十分广泛的应用.在解决三角问题时,如能活用该公式,充分挖掘其潜在功能,往往可以推陈出新,给人以耳目一新的感觉.一、三角函数式的化简例1化简1-sin6α-cos6αsin2α-sin4α.解1-sin6α-cos6αsin2α-sin4α=1sin2αcos2α-sin2α+cos2αsin2αcos2α×(sin2α+cos2α)2-3sin2αcos2αsin2αcos2α=1-(1-3sin2αcos2α)sin2αcos2α=3.二、用公式求值例2已知sinθ+cosθ=15,θ(0,π),则cotθ=_____.解∵sin2θ+cos2θ=1,∴(sinθ+cos…  相似文献   

11.
我们在初中已学过正弦定理和余弦定理:在△ABC中,角A、B、C所对的边分别为a、b、c,其外接圆半径为R,则有 a/sinA=b/sinB=c/sinC=2R及 a~2=b~2+c~2-2bccosA. 应用正弦定理把余弦定理中的边都化为角,则有: sin~2A=sin~2B+sin~2C-2sinBsinCcosA. 可以证明当A+B+C=kπ,k为奇数时此式都成立。我们不妨把上式称为正——余弦定理。下面举例说明这个定理的应用。例1 求sin~210°+cos~240°+sin10°cos40°的值。  相似文献   

12.
一、本章导析本章重点是锐角三角函数的概念和直角三角形的解法 .三角函数值之间的关系及对应用题题意的理解是难点 ,解应用问题时把握好辅助线的运用是解题的关键 .二、例题解析例 1 计算sin6 0°+3tan30°· cos6 0°( tan37°· tan53°- 2 cot4 5°)· cot30°- sin18°· sin90°( sin2 12°+sin2 78°)· cos72°.解 :原式 =32 +3× 33× 12( 1- 2× 1) 3- sin18°× 11× sin18°=- 2 .说明 :题中出现特殊角时应尽快将其三角函数值代入 ,对于一般角度则应寻找相应的公式 ,必要时可利用角度的互余关系转化之 .例 2 如图 1- 6 - 1,A…  相似文献   

13.
例求sin2 20°+cos2 50°+sin20°cos50°的值.解法1:原式点评:本解法先通过半角公式进行降幂,然后运用三角函数的和差化积与积化和差公式进行化简,同时把握对公式的灵活应用,体现了数学中  相似文献   

14.
本文举例介绍利用一些熟知的涉及三角形三内角的三角恒等式去解决一类三角函数式求值的问题。例1.求cos~220° cos~240°-cos20°cos40°之值。解在恒等式cos~2A cos~2B cos~2C 2cosAcosBcosC=1中,令A=20°,B=40°,C=120°,有cos~220° cos~240° (1/4)-cos20°cos40°=1,于是cos~220° cos~240°-cos20°cos40°=(3/4)。例2.求sin~220° sin~240°=sin20°sin40°之值。  相似文献   

15.
题目 1.求cos~210° cos~250°-sin40°·sin80°的值。(1991全国高中联赛) 2.求sin~220° cos~280° 3~(1/2)sin20°·cos80°的值。(1992全国高考题) 3.求sin~220° cos~250° sin20°·cos50°的值。(1995全国高考题) 4.求sin~222° sin~223° 2~(1/2)sin22°·sin23°的值。(自拟题)  相似文献   

16.
反证法不仅可以用来证明几何命题,还可以用来证明三角命题。有些三角命题用直接证法无从下手,但用反证法证就显得简捷明快、得心应手;同时在三角教学中适当采用反证法将加深学生对其实质的理解,提高解题的能力。 一、证明无理数问题 例1.求证:sin20°是无理数 证明:三倍角公式 sin60°=sin(3×20°)=3sin20°-4sin~320° ∴3sin20°-4sin~320° 假设sin20°是有理数,则①式 左边=有理数,右边=无理数,这是不可能的,  相似文献   

17.
代数式x2+xy+y2是一个非常特别的式子,它的一种特殊的变形与余弦定理的结构式非常吻合,即x2+xy+y2=x2+y2-2xycos 120.°这种特殊的变形可以用来处理一些相关的问题,往往能使某些问题化生为熟、化繁为简、化难为易,达到非常好的效果.例1(1995年全国高考题)求sin220°+cos250°+sin 20°cos 50°的值.分析标准答案和其他一些解法都利用了和差化积、积化和差等公式,而现在这两组公式不作为学生的记忆公式,要求已经淡化.能否利用其他方法来解答陈题就是一个挑战.由于sin220°+cos250°+sin 20c°os 50°=sin220°+sin240°-2sin 20°sin 40°·c…  相似文献   

18.
<正> 三角方程asin x+bcos x=c有解的充要条件是利用这一结论,可简捷地解决一些三角函数问题.一、求有关三角函数的值域或最值例1 求函数y=3sin(x+20°)+sin(x+80°)的最大值  相似文献   

19.
在三角函数求值过程中 ,有些题比较简单 ,有些则较难 ,解题时若不注意通性通法则容易进入死胡同或陷入恶性循环 .以下是笔者对学生颇感头痛的四类三角函数求值题的规律总结 ,希望对广大师生有所帮助 !1 能化为同分母的尽量不通分有些题看上去可以通分 ,但不是所有题都能通过通分达到目的 ,若能化为同分母则应先设法化为同分母后求值 .下面举例说明 .例 1 求sec5 0°+tan10°的值分析 许多学生往往会把此题化为 1cos5 0°+sin10°cos10°,然后通分 ,这样会较繁甚至解不出来 .如果能注意再化成 1sin4 0°+ cos80°s…  相似文献   

20.
1.用公式求值例1.求tg67°30′的值解一:tg135°/2=(1-135°/1+135°)~(1/2)=(1+cos45°/1-45°)~(1/2) =((1+cos45°)~2/sin~245°)~(1/2)=(1+cos45°)/sin45°解二:tg67°30′=sin135°/1+cos135° =(2~(1/2)/2)/1-2~(1/2)/2=2~(1/2)+1 解三:tg67°30′=1-135°/sin135°=(1+45°)/sin45° =(1+2~(1/2)/2)/2~(1/2)/2=2~(1/2)+1 上面三种解法,以解三为最简便。一般说来,如果α的正弦和余弦都知道,或者α为特殊角,那么,用公式Tα/2=(1-cosα)/sinα=sinα/(1+cosα)求值比较方便,特别用tgα/2=(1-cosα)/sinα最为方便,因为它的分母为单项式。但如果只知道cosα的值,α又不是特殊角,一般说用Tα/2=±(1-cosα/1+cosα)~(1/2)求值好些。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号