首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouth rinsing using a carbohydrate (CHO) solution has been suggested to improve physical performance in fasting participants. This study examined the effects of CHO mouth rinsing during Ramadan fasting on running time to exhaustion and on peak treadmill speed (Vpeak). In a counterbalanced crossover design, 18 sub-elite male runners (Age: 21?±?2 years, Weight: 68.1?±?5.7?kg, VO2max: 55.4?±?4.8?ml/kg/min) who observed Ramadan completed a familiarization trial and three experimental trials. The three trials included rinsing and expectorating a 25?mL bolus of either a 7.5% sucrose solution (CHO), a flavour and taste matched placebo solution (PLA) for 10?s, or no rinse (CON). The treatments were performed prior to an incremental treadmill test to exhaustion. Three-day dietary and exercise records were obtained on two occasions and analysed. Anthropometric characteristics were obtained and recorded for all participants. A main effect for mouth rinse on peak velocity (Vpeak) (CHO: 17.6?±?1.5?km/h; PLA: 17.1?±?1.4?km/h; CON: 16.7?±?1.2?km/h; P?ηp2?=?0.49) and time to exhaustion (CHO: 1282.0?±?121.3?s; PLA: 1258.1?±?113.4?s; CON: 1228.7?±?98.5?s; P?=?.002, ηp2?=?0.41) was detected, with CHO significantly higher than PLA (P?P?P?>?.05). Energy availability from dietary analysis, body weight, and fat-free mass did not change during the last two weeks of Ramadan (P?>?.05). This study concludes that carbohydrate mouth rinsing improves running time to exhaustion and peak treadmill speed under Ramadan fasting conditions.  相似文献   

2.
The objective of this study was to identify the effects of mouth rinsing with a 6% and 16% carbohydrate solution (CHO) on time trial performance when compared to a 0% control (PLA) when in a fed state. Twelve recreationally active males underwent three trials by which they had to complete a set workload (600?±?65?W) in a fed state. Throughout each trial, participants rinsed their mouths with a 25?ml bolus of a 0% PLA, 6% or 16% CHO (maltodextrin) for every 12.5% of work completed. Rating of perceived exertion (RPE) and heart rate were recorded every 12.5% of total work. Performance times and power output improved significantly when using the 6% and 16% CHO versus the PLA trial (6% versus PLA, p?=?.002 and 16% versus PLA, p?=?.001). When comparing the performance times of the 6% to 16% CHO, no significance was observed (p?=?.244). There was no significant difference between heart rate levels or RPE values across the three trials. In conclusion, mouth rinsing with a 6% or 16% CHO solution has a positive effect on a cycling time trial performance undertaken in a fed state.  相似文献   

3.
Carbohydrate mouth rinse (CMR) is a novel method proposed to enhance endurance performance lasting ≤ 60 min. The current study examined the influence of CMR on anaerobic performance tasks in 11 collegiate female soccer players after an overnight fast. Athletes completed two experimental sessions, during which carbohydrate (CHO; 6% maltodextrin) or taste- and colour-matched placebo (PLA) mouth-rinse solutions were administered in a counterbalanced, double-blinded design. Three rounds of a 5-min scrimmage bout and series of performance tests including a single countermovement vertical jump (1VJ), a set of four consecutive vertical jumps, a 72-m shuttle run (SR72) and 18-m sprint comprised each trial. Thirst sensation (TS), session TS, ratings of perceived exertion (RPE) and session RPE were assessed as secondary outcomes. The first SR72 approached significance (p = 0.069), but no significant between-trials differences were observed for any of the mean performance tasks. The highest 1VJ scores did not differ for the first (CHO = 47.3 ± 3.4, PLA = 47.7 ± 3.5 cm; p = 0.43), second (CHO = 48.0 ± 4.1, PLA = 47.9 ± 3.5 cm; p = 0.82) or third bout (CHO = 47.4 ± 3.9, PLA = 48.1 ± 3.9 cm; p = 0.26). TS approached significance (p = 0.053) during the first bout. No significant differences (p > 0.05) were found for any of the perceptual variables. Current results fail to support ergogenic influence of CMR on anaerobic performance tasks in collegiate female athletes.  相似文献   

4.
Abstract

The effects of carbohydrate (CHO) ingestion during sports which require high levels of motor and cognitive skill, such as squash, have produced conflicting results. This study aimed to explore the effect of CHO ingestion on squash skill following short duration exercise simulating the demands of squash play. Sixteen male squash players of a high standard were recruited. Following a VO2max test, and familiarisation trial, subjects completed two further trials assessing skill pre- and post-exercise designed to simulate the demands of squash play. A squash skill test assessed accuracy of the forehand and backhand straight drives. Exercise consisted of 20 minutes of shuttle running at 82(±5)% HRmax, and 9 minutes of ghosting at 94(±4)% HRmax. Capillary blood samples (20 µl) were taken at five intervals for measurement of glucose and lactate. Cognitive function was measured with choice visual and auditory reaction time (RT) tests pre- and post-exercise, as was forearm wrist flexor MVC and fatigue profile. CHO drink (6.4% CHO) or matched placebo (PL) were administered after the initial skill test (500 ml), after the shuttle running (250 ml), and after the ghosting (250 ml) in a double blind crossover design. There was no overall effect of CHO ingestion on skill maintenance (p=0.10) however, significantly fewer balls landed outside the scoring zone (p=0.03) on the CHO ingestion trial. There was no change of visual RT pre- to post-exercise on PL (+0.01±0.03s), but a significant improvement (?0.07±0.05s) was observed in the CHO trial. Auditory RT improved pre- to post-exercise during both trials. MVC and fatigue profile of the wrist flexors was not different between trials but showed a force decrement pre- to post-exercise (p<0.05). A significant difference in blood glucose was observed between trials (p<0.01) but blood lactate response during both trials was similar. These results lend some support to a beneficial effect of CHO ingestion on skill during game sports.  相似文献   

5.
Abstract

This study examined the effects of combined glucose and sodium bicarbonate ingestion prior to intermittent exercise. Ninemales (mean ± s age 25.4 ± 6.6 years, body mass 78.8 ± 12.0 kg, maximal oxygen uptake ([Vdot]O2max) 47.0 ± 7ml · kg · min?1) undertook 4 × 45 min intermittent cycling trials including 15 × 10 s sprints one hour after ingesting placebo (PLA), glucose (CHO), sodium bicarbonate (NaHCO3) or a combined CHO and NaHCO3 solution (COMB). Post ingestion blood pH (7.45 ± 0.03, 7.46 ± 0.03, 7.32 ± 0.05, 7.32 ± 0.01) and bicarbonate (30.3 ± 2.1, 30.7 ± 1.8, 24.2 ± 1.2, 24.0 ± 1.8 mmol · l?1) were greater for NaHCO3 and COMB when compared to PLA and CHO, remaining elevated throughout exercise (main effect for trial; P < 0.05). Blood lactate concentration was greatest throughout exercise for NaHCO3 and COMB (main effect for trial; P < 0.05). Blood glucose concentration was greatest 15 min post-ingestion for CHO followed by COMB, NaHCO3 and PLA (7.13 ± 0.60, 5.58 ± 0.75, 4.51 ± 0.56, 4.46 ± 0.59 mmol · l?1, respectively; P < 0.05). Gastrointestinal distress was lower during COMB compared to NaHCO3 at 15 min post-ingestion (P < 0.05). No differences were observed for sprint performance between trials (P = 1.00). The results of this study suggest that a combined CHO and NaHCO3 beverage reduced gastrointestinal distress and CHO availability but did not improve performance. Although there was no effect on performance an investigation of the effects in more highly trained individuals may be warranted.  相似文献   

6.
7.
Carbohydrate (CHO) ingestion enhances “feel-good” responses during acute exercise but no study has examined the effect of regular ingestion of CHO on affective valence. We investigated the effect of CHO ingestion on perceptual responses and perceived work intensity of individual exercise sessions throughout a 10-week cycling (“spin”) exercise intervention. We also assessed whether any changes in affect and/or perceived work intensity would influence health and fitness parameters. Twelve recreational exercisers (46 ± 9 years; nine females and three males) were randomly allocated to either CHO (7.5% CHO; 5 mL · kg?1 per exercise session; n = 6; CHO) or placebo (0% CHO, taste- and volume-matched solution; n = 6; PLA) groups. Participants exercised 2 × 45-min per week, over a 10-week intervention period. Perceptual measures of exertion (RPE), affect (feeling scale, FS) and activation (felt arousal scale, FAS) were assessed after each exercise session. The FAS ratings increased over time in CHO but decreased throughout the intervention in PLA (= 0.03). There were no differences in heart rate (= 0.70), RPE (= 0.05) and FS (= 0.84) between trials. Furthermore, no changes in health and fitness parameters were observed over time or between groups. CHO ingestion enhanced ratings of activation in recreational exercisers throughout a 10-week cycling intervention.  相似文献   

8.
This study examined the effects of combined glucose and sodium bicarbonate ingestion prior to intermittent exercise. Ninemales (mean ± s age 25.4 ± 6.6 years, body mass 78.8 ± 12.0 kg, maximal oxygen uptake (VO2 max)) 47.0 ± 7 ml · kg · min(-1)) undertook 4 × 45 min intermittent cycling trials including 15 × 10 s sprints one hour after ingesting placebo (PLA), glucose (CHO), sodium bicarbonate (NaHCO3) or a combined CHO and NaHCO3 solution (COMB). Post ingestion blood pH (7.45 ± 0.03, 7.46 ± 0.03, 7.32 ± 0.05, 7.32 ± 0.01) and bicarbonate (30.3 ± 2.1, 30.7 ± 1.8, 24.2 ± 1.2, 24.0 ± 1.8 mmol · l(-1)) were greater for NaHCO3 and COMB when compared to PLA and CHO, remaining elevated throughout exercise (main effect for trial; P < 0.05). Blood lactate concentration was greatest throughout exercise for NaHCO3 and COMB (main effect for trial; P < 0.05). Blood glucose concentration was greatest 15 min post-ingestion for CHO followed by COMB, NaHCO3 and PLA (7.13 ± 0.60, 5.58 ± 0.75, 4.51 ± 0.56, 4.46 ± 0.59 mmol · l(-1), respectively; P < 0.05). Gastrointestinal distress was lower during COMB compared to NaHCO3 at 15 min post-ingestion (P < 0.05). No differences were observed for sprint performance between trials (P = 1.00). The results of this study suggest that a combined CHO and NaHCO3 beverage reduced gastrointestinal distress and CHO availability but did not improve performance. Although there was no effect on performance an investigation of the effects in more highly trained individuals may be warranted.  相似文献   

9.
This study examined the effect of carbohydrate mouth rinsing on endurance running performance in women. Fifteen female recreational endurance runners, who used no oral contraceptives, ran two races of 1-h duration on an indoor track (216-m length) at 18:00 h after an 8-h fast with a 7-days interval between races, corresponding to the 3rd-10th day of each premenopausal runner’s menstrual cycle, or any day for the postmenopausal runners. In a double-blind random order, participants rinsed their mouth with 25 ml of either a 6.4% carbohydrate (RCHO) or a placebo solution (RP). No fluid was ingested during exercise. Serum 17β-Εstradiol (= 0.59) and Progesterone (= 0.35) did not differ between treatments. There was no difference in 1-hour running performance (RCHO: 10,621.88 ± 205.98 m vs. RP: 10,454.00 ± 206.64 m; = 1.784, = 0.096). Furthermore, the mean percentage effect (±99%CI) of RCHO relative to RP, 1.67% (?1.1% to 4.4%), and Cohen’s effect size (d = 0.21) support a trivial outcome of RCHO for total distance covered. In conclusion, carbohydrate mouth rinsing did not improve 60-min track running performance in female recreational runners competing in a low ovarian hormone condition, after an 8-h fast and when no fluid was ingested during exercise.  相似文献   

10.
ABSTRACT

Mouth rinsing has been proposed as a strategy to minimize performance decrements during Ramadan. We investigated the effect of 4 weeks of Ramadan on kicking performance in 27 Taekwondo athletes performing weekly Taekwondo Anaerobic Intermittent Kick Tests (TAIKT). The effects of a placebo, 6.4% glucose and 6-mg/kg caffeine mouth rinses on TAIKT performance and perceived exertion were investigated before, during weekly training sessions, and after Ramadan in a counterbalanced, crossover design. Ramadan had a significant negative impact on the percentage of successful kicks in Week 1 of Ramadan (pre: 76.7±0.4%, Week 1: 69.9±3.2%). The percentage of successful kicks was significantly greater in the caffeine mouth rinse condition compared to the glucose and placebo conditions during the first 3 weeks of Ramadan (caffeine: 38.3±6.8%, glucose: 36.4±6.9%, placebo: 36.0±6.5%). Caffeine decreased perceived exertion during Ramadan (0.74-1.15 AU, p>0.05). Our results showed that Ramadan had a significant negative effect on repeated high-intensity kicking efforts that should be considered when training and competing. Additionally, there were significant positive effects of a caffeine mouth rinse in a sport-specific test. These data suggest that athletes can consider mouth rinsing as a strategy to enhance performance when undertaking training or competition during a period of privation.  相似文献   

11.
Nine male student games players consumed either flavoured water (0.1 g carbohydrate, Na+ 6 mmol · l?1), a solution containing 6.5% carbohydrate-electrolytes (6.5 g carbohydrate, Na+ 21 mmol · l?1) or a taste placebo (Na+ 2 mmol · l?1) during an intermittent shuttle test performed on three separate occasions at an ambient temperature of 30°C (dry bulb). The test involved five 15-min sets of repeated cycles of walking and variable speed running, each separated by a 4-min rest (part A of the test), followed by 60 s run/60 s rest until exhaustion (part B of the test). The participants drank 6.5 ml · kg?1 of fluid as a bolus just before exercise and thereafter 4.5 ml · kg?1 during every exercise set and rest period (19 min). There was a trial order effect. The total distance completed by the participants was greater in trial 3 (8441 ± 873 m) than in trial 1 (6839 ± 512, P < 0.05). This represented a 19% improvement in exercise capacity. However, the trials were performed in a random counterbalanced order and the participants completed 8634 ± 653 m, 7786 ± 741 m and 7099 ± 647 m in the flavoured water (FW), placebo (P) and carbohydrate-electrolyte (CE) trials, respectively (P = 0.08). Sprint performance was not different between the trials but was impaired over time (FW vs P vs CE: set 1, 2.41 ± 0.02 vs 2.39 ± 0.03 vs 2.39 ± 0.03 s; end set, 2.46 ± 0.03 vs 2.47 ± 0.03 vs 2.47 ± 0.02 s; main

effect time, P < 0.01). The rate of rise in rectal temperature was greater in the carbohydrate-electrolyte trial (rise in rectal temperature/duration of trial, °C · h?1; FW vs CE, P < 0.05; P vs CE, N.S.). Blood glucose concentrations were higher in the carbohydrate-electrolyte than in the other two trials (FW vs P vs CE: rest, 4.4 ± 0.1 vs 4.3 ± 0.1 vs 4.2 ± 0.1 mmol · l?1; end of exercise, 5.4 ± 0.3 vs 6.4 ± 0.6 vs 7.2 ± 0.5 mmol · l?1; main effect trial, P < 0.05; main effect time, P < 0.01). Plasma free fatty acid concentrations at the end of exercise were lower in the carbohydrate-electrolyte trial than in the other two trials (FW vs P vs CE: 0.57 ± 0.08 vs 0.53 ± 0.11 vs 0.29 ± 0.04 mmol · l?1; interaction, P < 0.01). The correlation between the rate of rise in rectal temperature (°C · h?1) and the distance completed was ?0.91, ?0.92 and ?0.96 in the flavoured water, placebo and carbohydrate-electrolyte conditions, respectively (P < 0.01). Heart rate, blood pressure, plasma ammonia, blood lactate, plasma volume and rate of perceived exertion were not different between the three fluid trials. Although drinking the carbohydrate-electrolyte solution induced greater metabolic changes than the flavoured water and placebo solutions, it is unlikely that in these unacclimated males carbohydrate availability was a limiting factor in the performance of intermittent running in hot environmental conditions.  相似文献   

12.
Abstract

The aim of this study was to include self-paced exercise within a modified Loughborough Intermittent Shuttle Test (LIST-P) in order to quantify key performance variables not possible with prescribed workloads. Sixteen male games players performed two trials of the LIST-P, at least 7 days apart. The LIST-P incorporates 4 × 15-min blocks of “prescribed-pace” activity (participants exercise in time to audible signals) followed by 2 × 15-min blocks of “self-paced” running (no audible signals). Distances covered and mean speeds were monitored during self-paced exercise. Total distance covered (12.54 ± 0.45 km vs. 12.64 ± 0.32 km; P = 0.10) and mean speed (8.37 ± 0.31 km ? h?1 vs. 8.44 ± 0.22 km ? h?1; P = 0.10) was similar between trials. Other indices also showed the test to be reliable (Pearson’s correlation = 0.89 and 0.90 (P < 0.01), total distance and mean speed, respectively; intraclass correlation coefficient = 0.88 and 0.88 (P < 0.01); standard error of measurement = ±0.13 km and ±0.09 km ? h?1; coefficient of variation (CV) = 1.7% and 1.7%; ratio limits of agreement = 1.00 */÷1.03 and 1.01 */÷1.04). Sprint time was also similar between trials (2.60 ± 0.19 s vs. 2.64 ± 0.23 s; P = 0.29). Incorporating self-paced exercise within an established intermittent shuttle running test appears to be a sensitive means of quantifying key performance variables for multiple-sprint sports research.  相似文献   

13.
We examined the effects of time of day on a cycling time trial with and without a prolonged warm-up, among cyclists who tended towards being high in “morningness”. Eight male cyclists (mean?±?s: age = 24.9?±?3.5 years, peak power output = 319?±?34?W, chronotype = 39?±?6 units) completed a 16.1-km time trial without a substantial warm-up at both 07:30 and 17:30?h. The time trial was also completed at both times of day after a 25-min warm-up at 60% of peak power. Power output, heart rate, intra-aural temperature and category ratings of perceived exertion (CR-10) were measured throughout the time trial. Post-test blood lactate concentration was also recorded. Warm-up generally improved time trial performance at both times of day (95% CI for improvement = 0 to 30?s), but mean cycling time was still significantly slower at 07:30?h than at 17:30?h after the warm-up (95% CI for difference = 33 to 66?s). Intra-aural temperature increased as the time trial progressed (P <?0.0005) and was significantly higher throughout the time trials at 17:30?h (P = 0.001), irrespective of whether the cyclists performed a warm-up or not. Blood lactate concentration after the time trial was lowest at 07:30?h without a warm-up (P = 0.02). No effects of time of day or warm-up were found for CR-10 or heart rate responses during the time trial. These results suggest that 16.1-km cycling performance is worse in the morning than in the afternoon, even with athletes who tend towards ‘morningness’, and who perform a vigorous 25-min warm-up. Diurnal variation in cycling performance is, therefore, relatively robust to some external and behavioural factors.  相似文献   

14.
Purpose: The purpose of this investigation was to examine the effects of a submaximal running warm-up on running performance in male endurance athletes (n = 16, Mage = 21 ± 2 years, MVO2max = 69.3 ± 5.1 mL/kg/min). Method: Endurance performance was determined by a 30-min distance trial after control and submaximal running warm-up conditions in a randomized crossover fashion. The warm-up began with 5 min of quiet sitting, followed by 6 min of submaximal running split into 2-min intervals at speeds corresponding to 45%, 55%, and 65% maximal oxygen consumption (VO2max). A 2-min walk at 3.2 km/hr concluded the 13-min warm-up protocol. For the control condition, participants sat quietly for 13 min. VO2 and heart rate (HR) were determined at Minutes 0, 5, and 13 of the pre-exercise protocol in each condition. Results: At the end of 13 min prior to the distance trial, mean VO2 (warm-up = 14.1 ± 2.2 mL/kg/min vs. control = 5.5 ± 1.7 mL/kg/min) and mean HR (warm-up = 105 ± 11 bpm vs. control = 67 ± 11 bpm) were statistically greater (p < .001) in the warm-up condition compared with the control condition. The distance run did not statistically differ (p = .37) between the warm-up (7.8 ± 0.5 km) and control (7.7 ± 0.6 km) conditions; however, effect size calculation revealed a small effect (d = 0.2) in favor of the warm-up condition. Thus, the warm-up employed may have important and practical implications to determine placing among high-level athletes in close races. Conclusions: These findings suggest a submaximal running warm-up may have a small but critical effect on a 30-min distance trial in competitive endurance athletes. Further, the warm-up elicited increases in physiological variables VO2 and HR prior to performance; thus, a submaximal specific warm-up should warrant consideration.  相似文献   

15.
Purpose: The purpose of this study was to investigate whether loads carried in a backpack, with a load mass ranging from 0 to 20?kg, causes respiratory muscle fatigue. Methods: Eight males performed four randomised load carriage (LC) trials comprising 60?min walking at 6.5?km?h?1 wearing a backpack of either 0 (LC0), 10 (LC10), 15 (LC15) or 20?kg (LC20). Inspiratory (PImax) and expiratory (PEmax) mouth pressures were assessed prior to and immediately following each trial. Pulmonary gas exchange, heart rate (HR), blood lactate and glucose concentration and perceptual responses were recorded during the first and final 60?s of each trial. Results: Group mean PImax and PEmax were unchanged following 60-min load carriage in all conditions (p?>?.05). There was an increase over time in pulmonary gas exchange, HR and perceptions of effort relative to baseline measures during each trial (p?p?>?.05). Conclusions: These findings indicate that sub-maximal walking with no load or carrying 10, 15 or 20?kg in a backpack for up to 60?min does not cause respiratory muscle fatigue despite causing an increase in physiological, metabolic and perceptual parameters.  相似文献   

16.
Attenuated performance during intense exercise with limited endogenous carbohydrate (CHO) is well documented. Therefore, this study examined whether caffeine (CAF) mouth rinsing would augment performance during repeated sprint cycling in participants with reduced endogenous CHO. Eight recreationally active males (aged 23?±?2?yr, body mass 84?±?4?kg, stature 178?±?7?cm) participated in this randomized, single-blind, repeated-measures crossover investigation. Following familiarization, participants attended two separate evening glycogen depletion sessions. The following morning, participants completed five, 6?s sprints on a cycle ergometer (separated by 24?s active recovery), with mouth rinsing either (1) a placebo solution or (2) a 2% CAF solution. During a fifth visit, participants completed the sprints without prior glycogen depletion. Repeated-measures ANOVA identified significant main effect of condition (CAF, placebo, and control [P?P?P?P?P?P?相似文献   

17.
Abstract

In this study, we compared the effects of accumulated and continuous running on resting arterial blood pressure. Ten normotensive/pre-hypertensive men, aged 25.0 ± 4.2 years (mean ± s), participated in three 2-day trials at least one week apart in a randomized, repeated-measures design. On Day 1, participants rested (control) or ran at 70% of maximum oxygen uptake in either ten 3-min bouts (30 min rest between bouts) or one continuous 30-min bout. On Day 2, participants rested throughout the day. Blood pressure was measured at hourly intervals throughout Days 1 and 2. Mean resting systolic blood pressure on Day 2 was 6% lower during the accumulated and continuous running trials compared with the control trial (110 ± 6 vs. 110 ± 8 vs. 117 ± 6 mmHg respectively; P < 0.05), but there were no differences in resting diastolic blood pressure among the three trials (70 ± 7 vs. 69 ± 6 vs. 70 ± 5 mmHg respectively). These findings demonstrate that accumulating 30 min of running throughout the day in short bouts is as effective as 30 min of continuous running for reducing resting systolic blood pressure on the next day in young normotensive/pre-hyptertensive men.  相似文献   

18.
Abstract

The effect of active and passive recovery on repeated-sprint swimming bouts was studied in eight elite swimmers. Participants performed three trials of two sets of front crawl swims with 5 min rest between sets. Set A consisted of four 30-s bouts of high-intensity tethered swimming separated by 30 s passive rest, whereas Set B consisted of four 50-yard maximal-sprint swimming repetitions at intervals of 2 min. Recovery was active only between sets (AP trial), between sets and repetitions of Set B (AA trial) or passive throughout (PP trial). Performance during and metabolic responses after Set A were similar between trials. Blood lactate concentration after Set B was higher and blood pH was lower in the PP (18.29 ± 1.31 mmol · l?1 and 7.12 ± 0.11 respectively) and AP (17.56 ± 1.22 mmol · l?1 and 7.14 ± 0.11 respectively) trials compared with the AA (14.13 ± 1.56 mmol · l?1 and 7.23 ± 0.10 respectively) trial (P < 0.01). Performance time during Set B was not different between trials (P > 0.05), but the decline in performance during Set B of the AP trial was less marked than in the AA or PP trials (main effect of sprints, P < 0.05). Results suggest that active recovery (60% of the 100-m pace) could be beneficial between training sets, and may compromise swimming performance between repetitions when recovery durations are short (< 2 min).  相似文献   

19.
Time-to-exhaustion (TTE) trials are used in a laboratory setting to measure endurance performance. However, there is some concern with their ecological validity compared with time-trials (TT). Consequently, we aimed to compare cycling performance in TTE and TT where the duration of the trials was matched. Seventeen trained male cyclists completed three TTE trials at 80, 100 and 105% of maximal aerobic power (MAP). On a subsequent visit they performed three TT over the same duration as the TTE. Participants were blinded to elapsed time, power output, cadence and heart rate (HR). Average TTE was 865 ± 345 s, 165 ± 98 s and 117 ± 45 s for the 80, 100 and 105% trials respectively. Average power output was higher for TTE (294 ± 44 W) compared to TT (282 ± 43 W) at 80% MAP (P < 0.01), but not at 100 and 105% MAP (P > 0.05). There was no difference in cadence, HR, or RPE for any trial (P > 0.05). Critical power (CP) was also higher when derived from TTE compared to TT (P < 0.01). It is concluded that TTE results in a higher average power output compared to TT at 80% MAP. When determining CP, TTE rather than TT protocols appear superior.  相似文献   

20.
The aim of the present study was to determine the repeatability of a running endurance test using an automated treadmill system that requires no manual input to control running speed. On three separate occasions, 7 days apart, 10 experienced male endurance-trained runners (mean age 32 years, s = 10; VO2peak 61 ml x kg(-1) x min(-1), s = 7) completed a treadmill time trial, in which they were instructed to run as far as possible in 60 min. The treadmill was instrumented with an ultrasonic feedback-controlled radar modulator that spontaneously regulated treadmill belt speed corresponding to the changing running speed of each runner. Estimated running intensity was 70% VO2peak (s = 11) and the distance covered 13.5 km (s = 2), with no difference in mean performances between trials. The coefficient of variation, estimated using analysis of variance, with participant and trial as main effects, was 1.4%. In summary, the use of an automated treadmill system improved the repeatability of a 60-min treadmill time trial compared with time trials in which speed is controlled manually. The present protocol is a reliable method of assessing endurance performance in endurance-trained runners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号