首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to determine the biomechanical parameters that explain ventral start performance in swimming. For this purpose, 13 elite swimmers performed different variants of the ventral start technique. Two-dimensional video analyses of the aerial and underwater phases were used to assess 16 kinematic parameters from the starting signal to 5?m, and an instrumented starting block was used to assess kinetic data. A Lasso regression was used to reduce the number of parameters, providing the main determinants to starting performance, revealing different combinations of key determinants, depending on the variant (r²?≥?0.90), with flight distance being the most relevant to all variants (r?≤??0.80; p?r?=??0.79; p?r?≤?0.61; p?r²?=?0.66) or block time and flight distance (r²?=?0.83). These data provide relevant contributions to the further understanding of the biomechanics of swimming starts as well as insights for performance analysis and targeted interventions to improve athlete performance.  相似文献   

2.
The optimisation of undulatory underwater swimming is highly important in competitive swimming performance. Nineteen kinematic variables were identified from previous research undertaken to assess undulatory underwater swimming performance. The purpose of the present study was to determine which kinematic variables were key to the production of maximal undulatory underwater swimming velocity. Kinematic data at maximal undulatory underwater swimming velocity were collected from 17 skilled swimmers. A series of separate backward-elimination analysis of covariance models was produced with cycle frequency and cycle length as dependent variables (DVs) and participant as a fixed factor, as including cycle frequency and cycle length would explain 100% of the maximal swimming velocity variance. The covariates identified in the cycle-frequency and cycle-length models were used to form the saturated model for maximal swimming velocity. The final parsimonious model identified three covariates (maximal knee joint angular velocity, maximal ankle angular velocity and knee range of movement) as determinants of the variance in maximal swimming velocity (adjusted-r2 = 0.929). However, when participant was removed as a fixed factor there was a large reduction in explained variance (adjusted r2 = 0.397) and only maximal knee joint angular velocity continued to contribute significantly, highlighting its importance to the production of maximal swimming velocity. The reduction in explained variance suggests an emphasis on inter-individual differences in undulatory underwater swimming technique and/or anthropometry. Future research should examine the efficacy of other anthropometric, kinematic and coordination variables to better understand the production of maximal swimming velocity and consider the importance of individual undulatory underwater swimming techniques when interpreting the data.  相似文献   

3.
The swimming start is typically broken into three sub-phases; on-block, flight, and underwater phases. While overall start performance is highly important to elite swimming, the contribution of each phase and important technical components within each phase, particularly with the new kick-start technique, has not been established. The aim of this study was to identify technical factors associated with overall start performance, with a particular focus on the underwater phase. A number of parameters were calculated from 52 starts performed by elite freestyle and butterfly swimmers. These parameters were split into above-water and underwater groupings, before factor analysis was used to reduce parameter numbers for multiple regression. For the above-water phases, 81% of variance in start performance was accounted for by take-off horizontal velocity. For the underwater water phase, 96% of variance was accounted for with time underwater in descent, time underwater in ascent and time to 10 m. Therefore, developing greater take-off horizontal velocity and focussing on the underwater phase by finding the ideal trajectory will lead to improved start performance.  相似文献   

4.
The aim of this study was to evaluate the influence of dry-land inertial training (IT) on muscle force, muscle power, and swimming performance. Fourteen young, national-level, competitive swimmers were randomly divided into IT and control (C) groups. The experiment lasted four weeks, during which time both groups underwent their regular swimming training. In addition, the IT group underwent IT using the Inertial Training Measurement System (ITMS) three times per week. The muscle groups involved during the upsweep phase of the arm stroke in front crawl and butterfly stroke were trained. Before and after training, muscle force and power were measured under IT conditions. Simultaneously with the biomechanical measurements on the ITMS, the electrical activity of the triceps brachii was registered. After four weeks of training, a 12.8% increase in the muscle force and 14.2% increase in the muscle power (p?<?.05) were noted in the IT group. Moreover, electromyography amplitude of triceps brachii recorded during strength measurements increased by 22.7% in the IT group. Moreover, swimming velocity in the 100?m butterfly and 50?m freestyle improved significantly following the four weeks of dry-land IT (?1.86% and ?0.76%, respectively). Changes in the C group were trivial. Moreover, values of force and power registered during the ITMS test correlated negatively with the 100?m butterfly and 50?m freestyle swimming times (r value ranged from ?.80 to ?.91). These results suggest that IT can be useful in swimming practice.  相似文献   

5.
Undulatory underwater swimming (UUS) is one of the major skills contributing to performance in competitive swimming. UUS has two phases– the upbeat is performed by hip extension and knee flexion, and the downbeat is the converse action. The purpose of this study was to determine which kinematic variables of the upbeat and downbeat are associated with prone UUS performance in an elite sample. Ten elite participants were filmed performing three prone 20 m UUS trials. Seven landmarks were manually digitised to calculate eighteen kinematic variables, plus the performance variable– horizontal centre of mass velocity (VCOM). Mean VCOM was significantly correlated with body wave velocity (upbeat r = 0.81, downbeat r = 0.72), vertical toe velocity (upbeat r = 0.71, downbeat r = 0.86), phase duration (upbeat r = ?0.79), peak hip angular velocity (upbeat r = 0.73) and mean knee angular velocity (upbeat r = ?0.63), all significant at P < 0.05. A multiple stepwise regression model explained 78% of variance in mean VCOM. Peak toe velocity explained 72% of the variance, and mean body wave velocity explained an additional 6%. Elite swimmers should strive for a high peak toe velocity and a fast caudal transfer of momentum to optimise underwater undulatory swimming performance.  相似文献   

6.
This study aimed to determine if starting with the feet above the water (FAW) in male backstroke swimming resulted in faster start times (15-m time) than when the feet were underwater (FUW). It was hypothesised that setting higher on the wall would generate increased horizontal force and velocity, resulting in quicker starts. Twelve high-level male backstrokers performed three trials of the FAW and FUW techniques. A biomechanical swimming testing system comprising one force plate (1,000 Hz), four lateral-view (100 Hz), and five overhead (50 Hz) video cameras captured the swimmers' performance. Data for each participant's fastest trial for each technique were collated, grouped, and statistically analysed. Analysis included Wilcoxon, Spearman Rho correlation, and regression analysis. Wilcoxon results revealed a significantly faster start time for the FAW technique (p < 0.01). Peak horizontal force was significantly smaller for FAW (p = 0.02), while take-off horizontal velocity was significantly greater (p = 0.01). Regression analysis indicated take-off horizontal velocity to be a good predictor of start time for both techniques, and the horizontal displacement of the centre of mass for the FAW start.  相似文献   

7.
The aim of this study was to propose a new force parameter, associated with swimmers’ technique and performance. Twelve swimmers performed five repetitions of 25 m sprint crawl and a tethered swimming test with maximal effort. The parameters calculated were: the mean swimming velocity for crawl sprint, the mean propulsive force of the tethered swimming test as well as an oscillation parameter calculated from force fluctuation. The oscillation parameter evaluates the force variation around the mean force during the tethered test as a measure of swimming technique. Two parameters showed significant correlations with swimming velocity: the mean force during the tethered swimming (r = 0.85) and the product of the mean force square root and the oscillation (r = 0.86). However, the intercept coefficient was significantly different from zero only for the mean force, suggesting that although the correlation coefficient of the parameters was similar, part of the mean velocity magnitude that was not associated with the mean force was associated with the product of the mean force square root and the oscillation. Thus, force fluctuation during tethered swimming can be used as a quantitative index of swimmers’ technique.  相似文献   

8.
The purpose of this study was to learn the interplay between dry-land strength and conditioning, and stroke biomechanics in young swimmers, during a 34-week training programme. Twenty-seven swimmers (overall: 13.33?±?0.85 years old; 11 boys: 13.5?±?0.75 years old; 16 girls: 13.2?±?0.92 years old) competing at regional- and national-level competitions were evaluated. The swimmers were submitted to a specific in-water and dry-land strength training over 34 weeks (and evaluated at three time points: pre-, mid-, and post-test; M1, M2, and M3, respectively). The 100-m freestyle performance was chosen as the main outcome (i.e. dependent variable). The arm span (AS; anthropometrics), throwing velocity (TV; strength), stroke length (SL), and stroke frequency (SF; kinematics) were selected as independent variables. There was a performance enhancement over time (M1 vs. M3: 68.72?±?5.57?s, 66.23?±?5.23?s; Δ?=??3.77%; 95% CI: ?3.98;?3.56) and an overall improvement of the remaining variables. At M1 and M2, all links between variables presented significant effects (p?p?≤?.05). Between M1 and M3, the direct effect of the TV to the stroke biomechanics parameters (SL and SF) increased. The model predicted 89%, 88%, and 92% of the performance at M1, M2, and M3, respectively, with a reasonable adjustment (i.e. goodness-of-fit M1: χ2/df?=?3.82; M2: χ2/df?=?3.08; M3: χ2/df?=?4.94). These findings show that strength and conditioning parameters have a direct effect on the stroke biomechanics, and the latter one on the swimming performance.  相似文献   

9.
Abstract

Work presented in this paper provides a methodology for categorising swimming start performance based on peak force production on the main block and footrest components of the Omega OSB11 starting block. A total of 46 elite British swimmers were tested, producing over 1000 start trials. Overwater cameras were synchronised to a specifically designed start block that allowed the measurement of force production via two sets of four, tri-axis, force transducers; one set in the main block and one in the footrest. Data were then analysed, segregating trials for gender. Each start was categorised, with respect to the peak force production in horizontal and vertical components, into one of nine categories. Three performance indicators, i.e. block time, take-off velocity and distance of entry, were used to assess whether differences in performance could be correlated with these categories. Results from these data suggest that swimmers generating higher than average peak forces were more likely to produce a better overall start performance than those who produced forces lower than the average, for this population of athletes.  相似文献   

10.
In the past, studies and book recommendations on relay starts in swimming have been predominantly focused on the change-over time (COT) as a performance criterion. Aside from the circular backswing start with parallel foot placement, few studies have analysed differences in the take-off movement including step approaches as well. Although trends could be identified, the results remained still somewhat inconclusive. In contrast, no study has examined as has examined whether a reduction of COT in between wall contact of the income swimmer and the take-off of the outgoing swimmer is an optimal relay start strategy, as advocated by various swimming experts. Therefore, the purpose of this study was to compare two different relay start strategies: offensive strategy minimizing COT and conservative strategy to maximize horizontal peak force (HPF). In this regard, a learning intervention with 24 elite-level swimmers (12 females, 12 male) was conducted to compare both strategies regarding relay start time, HPF and COT. Subjects were randomly assigned to two feedback groups: COT versus HPF at take-off. The results of this study showed a clear advantage for HPF feedback for relay start performance measured by wall contact of the incoming swimmer and head passage at 7.5?m of the outgoing swimmer. In addition, similar reductions in COTs were found in both training groups. In conclusion, swimmers should focus on force production rather than minimizing COT. For the latter, deteriorating consequences for force production must be considered.  相似文献   

11.
The aim of this study was to compute a swimming performance confirmatory model based on biomechanical parameters. The sample included 100 young swimmers (overall: 12.3?±?0.74 years; 49 boys: 12.5?±?0.76 years; 51 girls: 12.2?±?0.71 years; both genders in Tanner stages 1–2 by self-report) participating on a regular basis in regional and national-level events. The 100?m freestyle event was chosen as the performance indicator. Anthropometric (arm span), strength (throwing velocity), power output (power to overcome drag), kinematic (swimming velocity) and efficiency (propelling efficiency) parameters were measured and included in the model. The path-flow analysis procedure was used to design and compute the model. The anthropometric parameter (arm span) was excluded in the final model, increasing its goodness-of-fit. The final model included the throw velocity, power output, swimming velocity and propelling efficiency. All links were significant between the parameters included, but the throw velocity–power output. The final model was explained by 69% presenting a reasonable adjustment (model's goodness-of-fit; x2/df?=?3.89). This model shows that strength and power output parameters do play a mediator and meaningful role in the young swimmers’ performance.  相似文献   

12.
The aim of this study was to compare three competitive swimming starts (grab, rear-weighted track, and front-weighted track). The starts were compared in terms of time and instantaneous horizontal velocity, both at take-off from the block and at 5 m from the wall. Twenty US college female swimmers performed three trials of each of the three randomly ordered starts. Swimmers left the block significantly sooner using the front-weighted track start (0.80 s) than the other two starts (both 0.87 s; P < 0.001). In the rear-weighted track start, however, the athletes left the blocks with significantly higher horizontal velocity than in the grab or front-weighted track start (3.99 vs. 3.87 and 3.90 m/s, respectively; each P < 0.001). By 5 m, the front-weighted track start maintained its time advantage over the grab start (2.19 vs. 2.24 s; P = 0.008) but not the rear-weighted track start (2.19 vs. 2.21 s; P = 0.336). However, the rear-weighted track start had a significant advantage over the front-weighted track start in terms of instantaneous horizontal velocity at 5 m (2.25 vs. 2.18 m/s; P = 0.009). Therefore, the rear-weighted track start had a better combination of time and velocity than the front-weighted track start. There was also a trend for the rear-weighted track start to have higher velocity at 5 m than the grab start, although this did not reach statistical significance (2.25 vs. 2.20 m/s; P = 0.042). Overall, these results favour the rear-weighted track start for female swimmers even though most of the athletes had little or no prior experience with it. Additional research is needed to determine whether males would respond similarly to females in these three different swimming starts.  相似文献   

13.
This study aimed to analyse the kinematic, kinetic and electromyographic characteristics of four front crawl flip turn technique variants. The variants distinguished from each other by differences in body position (i.e. dorsal, lateral, ventral) during rolling, wall support, pushing and gliding phases. Seventeen highly trained swimmers (17.9 ± 3.2 years old) participated in interventional sessions and performed three trials of each variant, being monitored with a 3-D video system, a force platform and an electromyography (EMG) system. Studied variables: rolling time and distance, wall support time, push-off time, peak force and horizontal impulse at wall support and push-off, centre of mass horizontal velocity at the end of the push-off, gliding time, centre of mass depth, distance, average and final velocity during gliding, total turn time and electrical activity of Gastrocnemius Medialis, Tibialis Anterior, Biceps Femoris and Vastus Lateralis muscles. Depending on the variant, total turn time ranged from 2.37 ± 0.32 to 2.43 ± 0.33 s, push-off force from 1.86 ± 0.33 to 1.92 ± 0.26 BW and centre of mass velocity during gliding from 1.78 ± 0.21 to 1.94 ± 0.22 m · s?1. The variants were not distinguishable in terms of kinematical, kinetic and EMG parameters during the rolling, wall support, pushing and gliding phases.  相似文献   

14.
This study investigated the effects of both anterior–posterior position and inclination of a back plate positioned on a starting platform on swimming start performance. Ten male college swimmers performed eight starts with varying combinations of take-off angle (normal and lower), inclination angle (10°, 25°, 45°, and 65°) and position (0.29, 0.44, and 0.59 m from the front edge of the starting block). Two-way repeated measures analysis of variance (ANOVA; take-off angle × back plate) for four conditions with take-off angles (normal and lower) and inclinations (10° and 45°), and one-way ANOVA for comparisons between four inclinations and three positions were carried out. Multiple comparisons were made using Bonferroni's method. The main effects of the take-off angle were on the vertical and resultant take-off velocities [F(1,18) = 36.72, p < 0.001 and F(1,18) = 9.58, p = 0.013, respectively]. Comparisons between the plate positions showed that the 5 m time of the 0.29 m condition was significantly longer, the take-off angle and vertical take-off velocity of the 0.59 m condition were significantly lower, and horizontal and resultant take-off velocities of the 0.29 m condition were significantly less. Rear foot take-off times were significantly longer in the ascending order: 0.29, 0.44, and 0.59 m.  相似文献   

15.
The aim of this study was to compare three competitive swimming starts (grab, rear-weighted track, and front-weighted track). The starts were compared in terms of time and instantaneous horizontal velocity, both at take-off from the block and at 5 m from the wall. Twenty US college female swimmers performed three trials of each of the three randomly ordered starts. Swimmers left the block significantly sooner using the front-weighted track start (0.80 s) than the other two starts (both 0.87 s; P < 0.001). In the rear-weighted track start, however, the athletes left the blocks with significantly higher horizontal velocity than in the grab or front-weighted track start (3.99 vs. 3.87 and 3.90 m/s, respectively; each P < 0.001). By 5 m, the front-weighted track start maintained its time advantage over the grab start (2.19 vs. 2.24s; P = 0.008) but not the rear-weighted track start (2.19 vs. 2.21 s; P = 0.336). However, the rear-weighted track start had a significant advantage over the front-weighted track start in terms of instantaneous horizontal velocity at 5 m (2.25 vs. 2.18 m/s; P = 0.009). Therefore, the rear-weighted track start had a better combination of time and velocity than the front-weighted track start. There was also a trend for the rear-weighted track start to have higher velocity at 5 m than the grab start, although this did not reach statistical significance (2.25 vs. 2.20 m/s; P = 0.042). Overall, these results favour the rear-weighted track start for female swimmers even though most of the athletes had little or no prior experience with it. Additional research is needed to determine whether males would respond similarly to females in these three different swimming starts.  相似文献   

16.
Brachial-ankle pulse wave velocity (baPWV) has become a popular modality of arterial stiffness measurement. However, its projected arterial segment does not include the proximal aorta which plays important roles for attenuating cardiac pulsation and reducing afterload. We hypothesised that aerobic capacity would be more strongly associated with PWV including the proximal aorta than that omitting the proximal aorta. To test our hypothesis, we compared the association between aerobic capacity and arterial stiffness parameters omitting vs. including the proximal aorta (i.e. baPWV vs. heart-ankle PWV [haPWV]) in 82 apparently healthy men (18–64 years). Estimated VO2max significantly correlated with baPWV (r?=??0.394, P?<?.001), and more strongly with haPWV (r?=??0.546, P?<?.001). The forward stepwise multi-regression analysis revealed that haPWV (β?=??0.335), as well as age, heart rate, and body mass index (β?=??0.280 to ?0.297), was a significant independent determinant explaining variance of estimated VO2max. These results suggest that aerobic capacity is influenced more strongly by the proximal aortic stiffness than distal aortic stiffness.  相似文献   

17.
Objective: Effective warm-ups are attributed to several temperature-related mechanisms. Strategies during the transition phase, preceding swimming competition, have been shown to prolong temperature-related warm-up effects. The purpose of this study was to evaluate the effects of two different clothing strategies during the transition phase, on subsequent 100-m maximal swimming performance. Methods: Nine competitive swimmers (3 female, 21?±?3?yrs; 6 male 20?±?2?yrs, mean performance standard 702 FINA Points, mean 100-m seasons best time 61.54?s) completed their own 30-min individual pool warm-up, followed by 7-min changing time and a 30-min transition phase, straight into a 100-m maximal effort time-trial. During the transition phase, swimmers remained seated, either wearing warm or limited clothing. Swimmers returned 1 week later, where clothing conditions were alternated. Results: Post-transition phase skin and core temperature remained higher in the warm clothing condition compared to the limited clothing condition (Mean Core: 36.90?±?0.17°C, 36.61?±?0.15°C, P?P?P?Conclusion: Wearing warm clothing during a 30-min transition phase improved swimming performance by 0.6%, compared to limited clothing.  相似文献   

18.
The aim of this study was to examine the influence of level of skill and swimming speed on inter-limb coordination of freestyle swimming movements. Five elite (2 males, 3 females; age 18.9?±?1.0 years, height 1.71?±?0.04?m, body mass 62.1?±?7.0?kg) and seven novice (age 22.0?±?2.0 years, height 1.77?±?0.04?m, body mass 74.8?±?9.0?kg) swimmers swam a sprint and a self-paced 25?m freestyle trial. The swimming trials were recorded by four digital cameras operating at 50 Hz. The digitized frames underwent a three-dimensional direct linear transformation to yield the three-dimensional endpoint kinematic trajectories. The spatio-temporal relationship between the upper limbs was quantified by means of the peak amplitude and time lag of the cross-correlation function between the right and left arm's endpoint trajectories. A strong anti-phase coupling between the two arms, as confirmed by peak amplitudes greater than 0.8, was noted for both groups and swimming speeds. Significantly higher (P <?0.05) peak amplitudes were observed for the sprint compared with self-paced swimming. No significant differences in the strength of inter-limb coupling were noted between the elite and novice swimmers (P >?0.05). Time lags were very close to 0?ms and did not differ between groups or swimming speeds. We conclude that in freestyle swimming, the intrinsic anti-phase (180° phase difference) inter-limb relationship is strongly preserved despite the physically powerful environmental influence of the water and this “preferred” pattern is not affected by level of skill. In contrast, increasing movement speed results in stronger inter-limb coupling that is closer to the anti-phase inter-limb relationship.  相似文献   

19.
The aim of this study was to establish the effectiveness of a resistance training programme, designed to improve vertical jumping ability, on the grab, swing and rear-weighted track starts in swimming. Twenty-three female non-competitive swimmers participated (age 19.9 +/- 2.4 years; mean +/- s). The diving techniques were practised weekly for 8 weeks. The participants were randomly assigned to a control group (n = 11) or a resistance-training group (n = 12), which trained three times a week for 9 weeks. The tests before and after the training programme involved performing each dive technique and six dry-land tests: two countermovement jumps (with and without arms), two isokinetic squats (bar speeds of 0.44 and 0.70 rad x s(-1)) and two overhead throws (with andwithout back extension). A repeated-measures multivariate analysis of variance was used to show that resistance training improved performance in the dry-land tests (P < 0.0001). No significant improvements due to training were found for any temporal, kinematic or kinetic variables within the grab or swing starts. Significant improvements (P < 0.05) were found for the track start for take-off velocity, take-off angle and horizontal impulse. The results suggest that the improved skill of vertical jumping was not transferred directly to the start, particularly in the grab technique. Non-significant trends towards improvement were observed within all starts for vertical force components, suggesting the need to practise the dives to retrain the changed neuromuscular properties.  相似文献   

20.
The main objectives of the present research were (1) to examine the relationships between the distances travelled underwater during the start and turn segments with swimming race performance at the elite level and (2) to determine if the individualised-distance start and turn parameters affect the overall race performance. The race parameters of the 100 and 200?m events during 2013 World Championships were measured by an innovative image-processing system (InThePool® 2.0). Overall, 100?m race times were largely related to faster start velocities in men's breaststroke and freestyle events. Conversely, overall, 200?m race times were largely related to longer starting distances in the women's butterfly events, to longer turn distances in men's and women's backstroke and women's butterfly events and to shorter turn distances in women's freestyle events. Changes on the start or turn velocities could represent moderate time improvements in most of the 100?m events, whereas modifications on the start or turn distances (especially in the last turn) could provide elite swimmers with time improvements of practical importance on the 200?m events. The evaluation of races by individualised-distance parameters should be provided to elite swimmers in order to decide the most appropriate race segment configuration for each event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号