首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、选择题1.设sinα=-35,cosα=54,那么下列的点在角α的终边上的是().A.(-3,4)B.(-4,3)C.(4,-3)D.(3,4)2.下列四组函数f(x)与g(x),表示同一个函数的是().A.f(x)=sinx,g(x)=xsxinxB.f(x)=sinx,g(x)=1-cos2xC.f(x)=1,g(x)=sin2x+cos2xD.f(x)=1,g(x)=tanxcotx3.tanx+tany=0是tan(x+y)=0的().A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分又不必要条件4.要得到y=sin2x-π3的图象,只需将y=sin2x的图象().A.向左平移3πB.向右平移3πC.向左平移6πD.向右平移6π5.若α、β∈0,π2,则().A.cos(α+β)>cosα+cosβB.cos(α+β)>s…  相似文献   

2.
一、选择题(满分42分,每小题7分)1.α,β为锐角,且α β>π/2,x∈R,f(x)=(cosα/sinβ)~(|x|) (cosβ/sinα)~(|x|),则( )。(A)f(x)在定义域内是增函数(B)f(x)在定义域内是减函数(C)f(x)在[0, ∞)内为增函数,在  相似文献   

3.
三角是初等数学的重要组成部分 ,三角函数独特的性质 (如定义域、有界性、周期性等 ) ,以及三角函数众多的公式 ,使解决三角问题的条件较一般的代数问题更趋于隐蔽 ,解题的过程有更多陷井 ,解题的思维更需慎密 ,本文通过挖掘三角问题的隐含条件 ,揭示其隐含方式 ,展示其隐含真面目 ,从而走出易陷的误区 ,寻找正确的解决方法 .一、隐含于函数的定义域中例 1 判断函数 f ( x) =1+sin x - cos x1+sin x +cos x的奇偶性 .不少学生认为 :∵ f ( x) =2 sin x2 ( sin x2 +cos x2 )2 cos x2 ( sin x2 +cos x2 )=tan x2 ,∴ f ( - x) =tan ( - x2 ) …  相似文献   

4.
最近,收到好几位老师的来稿,就如下一类复合函数问题提出了各自的看法,这些问题是: 1.已知f(cos x)=cos 17x,求证f(sin x)=sin 17x. (选自<中学数学月刊>) 2.若f(sin x)=sin 2x,求f(cos 105°). (选自<数学通讯>) 3.已知f(tan x)=sin x,求f(cot x). (选自<数学通报>)等等.  相似文献   

5.
题若α,β,γ∈R,求u=sin(α-β) sin(β-γ) sin(γ-α)的最大值和最小值.在本刊2006年第1期第40页上,应用4元均值不等式给出了该题的一种初等解法,其实,逆向利用行列式,可以给出该问题的一种巧思妙解.解u=sinαcosβ sinβcosγ sinγcosα-cosαsinβ-cosβsinγ-cosγsinα=sinαcosα1sinβcosβ1sinγcosγ1,构造点A(sinα,cosα),B(sinβ,cosβ),C(sinγ,cosγ),则|u|=2S△ABC. 1很明显,上面的三点A、B、C都在单位圆:x2 y2=1上.因为圆内接三角形,以正三角形的面积为最大,所以当△ABC为正三角形时,S△ABC取得最大值343,于是|u…  相似文献   

6.
文 1、文 2分别利用图象法和均值代换法解决了一类在给定条件下三角函数取值范围问题 .本文利用函数的单调性来解决这类问题 (下面的例子都是文 1、2中的例题 ,以后不再说明 ) .例 1 已知 sin x+ 2 cos y=2 ,求 2 sin x+ cos y的取值范围 .解 由条件得 sin x=2 ( 1 - cos y) ,1∴ 2 sin x+ cos y=4 - 3cos y,2由 1 ,有 2 | ( 1 - cos y) | =| sin x|≤ 1 ,∴ 12 ≤cos y≤ 32 .又 | cos y|≤ 1 ,∴ 12 ≤cos y≤ 1 . 3令 t=cos y,则由 2 ,3有2 sin x+ cos y=4 - 3t,其中 t∈ [12 ,1 ].令 f( t) =4 - 3t ( 12 ≤ t≤ 1 ) .易知 f( t)在 [12…  相似文献   

7.
参考公式:三角函数的积化和差公式sinαcosβ=12[sin(α+β)+sin(α-β)]cosαsinβ=12[sin(α+β)-sin(α-β)]cosαcosβ=12[cos(α+β)+cos(α-β)]sinαsinβ=-12[cos(α+β)-cos(α-β)]正棱台、圆台的侧面积公式S台侧=12(c′+c)l其中c′,c分别表示上、下底面周长,l表示斜高或母线长球体的表面积公式:S球=4πR2其中R表示球的半径一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)(理)设全集是实数集R,M={x|-2≤x≤2},N={x|x<1},则M∩N等于()A.{x|x<-2}B.{x|-2相似文献   

8.
在高中数学教学中,对于函数f(x)=sin x cosx的最小正周期的求法,总避开不提.问题的提法,多以选择题或是证明题的形式出现.如求证:f(x)=sin x cosx的最小正周期是2π.解题过程很简单:证明∵对任意的x∈R,都有f(x π2)=sin(x π2) cos(x π2)=cos x ?sin x=f(x).∴T=π2是函数f(x)=sin x cosx的周期.假设存在0相似文献   

9.
一、对于含有代数式a2-x2√的函数或方程,可设x=acosα(0≤α≤π)或x=asinα(-π2≤α≤π2).例1已知x1-y2√+y1-x2√=1,求u=x+y的取值范围.解由题意可知0≤x≤1,0≤y≤1,不妨设x=cosα,y=cosβ(0≤α≤π2,0≤β≤π2),代入已知条件中得cosα1-cos2β√+cosβ1-cos2α√=1,即sin(α+β)=1.∵0≤α≤π2,0≤β≤π2,0≤α+β≤π,∴α+β=π2,β=π2-α,∴u=x+y=cosα+cosβ=cosα+cos(π2-α)=cosα+sinα=2√sin(α+π4).∵π4≤α+π4≤34π,2√2≤sin(α+π4)≤1,即1≤2√sin(α+π4)≤2√,∴u=x+y的取值范围是犤1,2√犦.二、对于含有…  相似文献   

10.
一、问题的提出 看这样一个数学问题:若sinαcosβ=1/2,求cosαsinβ的取值范围. 一个典型的错误解法是: 解:因为sin(α+β)=(sinαcosβ+cosαsinβ)∈[-1,1],sinαcosβ=1/2,所以-3/2≤cosαsinβ≤1/2. 它的错误原因在于找到的约束条件不全面,仅考虑了-1≤sin(α+β)≤1.许多参考书上给出的正确的解法是: 解:因为sin(α+β)=(sinαcosβ+cosαsinβ)∈[-1,1],sinαcosβ=1/2,所以-3/2≤cosαsinβ≤1/2, 因为sin(α-β)=sinαcosβ-cosαsinβ=(1-cosαsinβ) ∈[-1,1].  相似文献   

11.
第 31届西班牙数学奥林匹克第 2题是 :证明 :如果 ( x+ x2 + 1 ) ( y+ y2 + 1 )= 1 ,那么 x+ y=0 .文 [1 ]给出了此题的一种证法 ,本文再给出此题的两种换元证法 ,然后给出一个新命题 .证法 1 设 x=tanα,y=tanβ,其中 α,β∈ ( - π2 ,π2 ) ,则由条件知 ,( tanα+ secα) ( tanβ+ secβ) =1 ( sinα+ 1 ) ( sinβ+ 1 ) =cosαcosβ sinα+sinβ+ 1 =cos(α+β) 2 sinα+β2 cosα-β2 +1 =1 - 2 sin2 α+β2 sin α+β2 ( sin α+β2 +sinπ-α+β2 ) =0 sin α+β2 sin 2β+π4 ·cos2α-π4 =0 .又由 α,β∈ ( - π2 ,π2 ) ,知…  相似文献   

12.
许多三角最值问题,若用构造法求解,可使复杂问题简捷获解.这样不仅有利于数学思想的运用,而且有利于培养创新意识和创新能力.根据题设条件的特征,恰当构造一种新形式是灵活运用此法的关键,本文举例介绍几种方法.一、构造对偶式,用整体思想例1已知sin2α+sin2β+sin2γ=34,试求sin2α+sin2β+sin2γ的最大值.解:由sin2α+sin2β+sin2γ=34可得cos2α+cos2β+cos2γ=32.(1)构造对偶式sin2α+sin2β+sin2γ=x,(2)(1)2+(2)2得94+x2=3+2[cos(2α-2β)+cos(2β-2γ)+cos(2α-2γ)]≤3+2×3=9,其中等号可以在例如α=β=γ=π6时成立.∴x2≤274,|x|…  相似文献   

13.
在一些参考资料上,经常可以看到这样一道三角题:题目:已知 sinα sinβ=2~(1/2)/2,求 cosα cosβ的取值范围.其解法为:设 cosα cosβ=x,则(sinα sinβ)~2 (cosα cosβ)~2=1/2 x~2,即2 2cos(α-β)=1/2 x~2,∴x~2=3/2 2cos(α-β).∵-1  相似文献   

14.
一、选择题(每小题6分,共6 0分)1.已知y =f(x)是定义在R上的偶函数,当x>0时,f(x) =log2 (1 x) .那么,当x <0时,f(x) =(  ) .(A)log2 (1 x)    (B)log2 (1-x)(C)log2 (- 1 x) (D)log2 (- 1-x)2 .若p、q为实数,则函数f(x) =x3 px2 qx r(  ) .(A)在(-∞, ∞)上是减函数(B)在(-∞, ∞)上是增函数(C)当p2 <3q时,在(-∞, ∞)上是增函数(D)当p2 >3q时,在(-∞, ∞)上是增函数3.已知α、β均为锐角,cos(α β) =- 45 .若设sinβ=x ,cosα=y ,则y与x的函数关系式为(  ) .(A)y =- 45 1-x2 35 x (0 相似文献   

15.
河南、河北、安徽、江西、山东、山西等地使用  三、解答题 :本大题共 6小题 ,共 74分理 ( 1 7) [文 ( 1 8) ]求函数 f (x ) =sin4 x cos4 x sin2 xcos2 x2 -sin 2x 的最小正周期、最大值和最小值 .基本解法 :f(x)=(sin2 x cos2 x) 2 -sin2 xcos2 x2 -2sinxcosx=1 -sin2 xcos2 x2 ( 1 -sinxcosx)=12 ( 1 sinxcosx) =14sin 2x 12 .所以函数 f(x)的最小正周期是π ,最大值是 34,最小值是 14.巧思妙解 :解法 1 (河北 /王双记 安徽 /章腊华 李永革 山东 /董林 )f(x) =sin4 x cos2 x(cos2 x sin2 x)2 -2sinxcosx=sin4 x cos2 x2 ( 1…  相似文献   

16.
参考公式 :三角函数的积化和差公式sinαcosβ =12 [sin(α+ β) +sin(α -β) ]cosαsinβ=12 [sin(α+ β) -sin(α-β) ]cosαcosβ =12 [cos(α + β) +cos(α-β) ]sinαsinβ =-12 [cos(α + β) -cos(α -β) ]正棱台、圆台的侧面积公式S台侧 =12 (c′+c)l,其中c′、c分别表示上、下底面周长 ,l表示斜高或母线长 .球的体积公式V球 =43 πR3,其中R表示球的半径一、选择题 (本大题共 12小题 ,每题 5分 ,共 60分 ,在每小题给出的 4个选项中 ,只有一项是符合题目要求的 )1.(文 )直线 y=2x关于x轴对称的直线方程为 (   )   (A) y=-1…  相似文献   

17.
一、三角函数取值范围的方程求法我们知道在sin~2a+cos~2α=·1中,运用换元,令cosα=x,sinα=y,就是x~2+y2=1.这样就可把求t=F(cosα,sinα)的范围化为在方程组{x~2+y~2}=1F(x,y)=t},中求t的取值范围.例1已知sinαcosβ=1/2,求t=cosαsi的取值范围.解令cosα=x,sinα=y,cosβ=m,sinβ=n,得方程组(?)消去m,n,y(过程略)得4x~4-(4t~2+3)x~2+4t~2=0(0≤x~2≤1)⑤在⑤中解出t~2求值域或解出x~2求定义域或用二次方程实根的分布方法可得0≤t2≤1/4,所以一1/2≤t≤1/2.例2已知sinα+sinβ=1,求t=cosαt+cosβ的取值  相似文献   

18.
解析几何的本质是用代数方法研究几何问题,而三角可以实现几何特征与代数运算的有效转化,因此解析几何中的三角问题俯拾即是:一、以三角为工具,用三角的一整套变换公式,求解圆锥曲线的特征变量【例1】设P是椭圆x2a2+y2b2=1(a>b>0)上任意一点,F1、F2是椭圆的焦点,∠PF1F2=α,∠PF2F1=β,求椭圆的离心率e.解:由正弦定理得|PF1|sinβ=|PF2|sinα=|F1F2|sin(π-α-β),∴|PF1|+|PF2|sinα+sinβ=|F1F2|sin(α+β),即2asinα+sinβ=2csin(α+β),而e=ca,∴e=sin(α+β)sinα+sinβ=2sinα+β2cosα+β22sinα+β2cosα-β2=cosα+β2cos…  相似文献   

19.
【题】已知ccooss42βα ssiinn42βα=1,求证:ccooss42αβ ssiinn24αβ=1.法1(三角换元)∵ccooss2βα2 ssiinn2βα2=1,∴可设ccooss2βα=sinφ,ssiinn2βα=cosφ,则sinφcosβ cosφsinβ=cos2α sin2α=1,∴sin(φ β)=1,∴φ β=2π 2kπ,k∈Z,∴sinφ=sin2π-β 2kπ=cosβ,同理,cosφ=sinβ,∴cos2α=cos2β,sin2α=sin2β,∴ccooss42αβ ssiinn24αβ=cos2β sin2β=1.法2(巧构直线与圆相切模型)由已知Accooss2βα,ssiinn2βα,B(cosβ,sinβ)都在单位圆x2 y2=1上,圆x2 y2=1过点B的切线方程l是cosβx sinβy=1,A点也满足此…  相似文献   

20.
|sinx|≤1、|cosx|≤1(x∈R),是三角函数中广泛应用的重要性质,恰当运用可使解题过程简捷流畅;反之,忽视正、余弦函数的有界性,是解题过程中出现错误的常见原因.下面结合实例介绍它的解题功能.一、求角【例1】已知6sin3β-cos22α=6,求α、β.解:原方程变形为6(sin3β-1)=cos22α,则有6(sin3β-1)≥0,即sin3β≥1因为|sin3β|≤1,所以sin3β=1,3β=2kπ 2π,即β=23kπ 6π(k∈Z),此时,cos2α=0,2α=kπ 2π,即α=12kπ 4π(k∈Z).评注:等式中含有两个未知数,需从正弦函数的有界性中挖掘隐含条件,寻找突破口.二、求最值【例2】求函…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号