首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the beliefs of six experienced high school science teachers about (1) what is successful science learning; (2) what are the purposes of laboratory in science teaching; and (3) how inquiry is implemented in the classroom. An interpretive multiple case study with an ethnographic orientation was used. The teachers' beliefs about successful science learning were substantively linked to their beliefs about laboratory and inquiry implementation. For example, two teachers who believed that successful science learning was deep conceptual understanding, used verification labs primarily to illustrate these concepts and used inquiry as a type of isolated problem‐solving experience. Another teacher who believed that successful science learning was enculturation into scientific practices used inquiry‐based labs extensively to teach the practices of science. Tension in competing beliefs sets and implications for reform are discussed. ? 2004 Wiley Periodicals, Inc. J Res Sci Teach 41: 936‐960, 2004.  相似文献   

2.
Active‐learning labs for two topics in high school biology were developed through the collaboration of high school teachers and university faculty and staff and were administered to 408 high school students in six classrooms. The content of instruction and testing was guided by State of Texas science objectives. Detailed teacher records describing daily classroom activities were used to operationalize two types of instruction: active learning, which used the labs; and traditional, which used the teaching resources ordinarily available to the teacher. Teacher records indicated that they used less independent work and fewer worksheets, and more collaborative and lab‐based activities, with active‐learning labs compared to traditional instruction. In‐class test data show that students gained significantly more content knowledge and knowledge of process skills using the labs compared to traditional instruction. Questionnaire data revealed that students perceived greater learning gains after completing the labs compared to covering the same content through traditional methods. An independent questionnaire administered to a larger sample of teachers who used the lab‐based curriculum indicated that they perceived changing their behaviors as intended by the student‐centered principles of the labs. The major implication of this study is that active‐learning–based laboratory units designed and developed collaboratively by high school teachers and university faculty, and then used by high school teachers in their classrooms, can lead to increased use of student‐centered instructional practices as well as enhanced content knowledge and process learning for students. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 960–979, 2007  相似文献   

3.
This study investigated the effects of metaconceptually-enhanced, simulation-based inquiry learning on eighth grade students’ conceptual change in science and their development of science epistemic beliefs. Two experimental groups studied the topics of motion and force using the same computer simulations but with different simulation guides: one enhanced with metaconceptual scaffolding, while the other was not. The findings led to the following conclusions: (a) metaconceptual scaffolding enhanced simulation-based learning by significantly reducing science misconceptions, but it was not as effective in changing students’ mental models which consisted of multiple interrelated key concepts; (b) students’ beliefs about the speed of learning and the construction of knowledge were strong predictors of conceptual change learning outcomes; (c) epistemologically more mature students did not benefit more from metaconceptual interventions than those with less mature beliefs; (d) further interventions are needed to promote the development of students’ science epistemic beliefs in inquiry learning.  相似文献   

4.
Students' epistemological beliefs about scientific knowledge and practice are one important influence on their approach to learning. This article explores the effects that students' inquiry during a 4‐week technology‐supported unit on evolution and natural selection had on their beliefs about the nature of science. Before and after the study, 8 students were interviewed using the Nature of Science interview developed by Carey and colleagues. Overall, students held a view of science as a search for right answers about the world. Yet, the inconsistency of individuals' responses undermines the assumption that students have stable, coherent epistemological frameworks. Students' expressed ideas did not change over the course of the intervention, suggesting important differences between students' talk during inquiry and their abilities to talk epistemologically about science. Combined with previous work, our findings emphasize the crucial role of an explicit epistemic discourse in developing students' epistemological understanding. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 369–392, 2003  相似文献   

5.
We conducted a laboratory‐based randomized control study to examine the effectiveness of inquiry‐based instruction. We also disaggregated the data by student demographic variables to examine if inquiry can provide equitable opportunities to learn. Fifty‐eight students aged 14–16 years old were randomly assigned to one of two groups. Both groups of students were taught toward the same learning goals by the same teacher, with one group being taught from inquiry‐based materials organized around the BSCS 5E Instructional Model, and the other from materials organized around commonplace teaching strategies as defined by national teacher survey data. Students in the inquiry‐based group reached significantly higher levels of achievement than students experiencing commonplace instruction. This effect was consistent across a range of learning goals (knowledge, reasoning, and argumentation) and time frames (immediately following the instruction and 4 weeks later). The commonplace science instruction resulted in a detectable achievement gap by race, whereas the inquiry‐based materials instruction did not. We discuss the implications of these findings for the body of evidence on the effectiveness of teaching science as inquiry; the role of instructional models and curriculum materials in science teaching; addressing achievement gaps; and the competing demands of reform and accountability. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:276–301, 2010  相似文献   

6.
The purpose of this study was to investigate (a) what effect the use of interactive computer‐based simulations (ICBSs), the use of laboratory inquiry‐based experiments (LIBEs), and the use of combinations of an ICBS and a LIBE, in a conceptually oriented physics course, have on science teachers' beliefs about and attitudes toward the use of these learning and teaching tools, as well as the effect on their intentions to incorporate these tools in their own future teaching practices, (b) science teachers' attitudes toward physics and the effect that the use of ICBSs and/or LIBEs have on teachers' attitudes toward physics, and (c) whether teachers' beliefs have an effect on their attitudes and whether their attitudes have an effect on their intentions. A pre–post comparison study and the Theory of Reasoned Action (TRA) were used for this purpose. Results confirmed the TRA model that beliefs affect attitudes and these attitudes then affect intentions, and showed that science teachers' attitudes toward physics, the use of an ICBS, the use of a LIBE, and the use of a combination of an ICBS and an LIBE were highly positive at the end of the study. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 792–823, 2003  相似文献   

7.
Adapted primary literature (APL) refers to an educational genre specifically designed to enable the use of research articles for learning biology in high school. The present investigation focuses on the paedagogical content knowledge (PCK) of four high‐school biology teachers who enacted an APL‐based curriculum in biotechnology. Using a constructivist qualitative research approach, we analysed those teachers' aims and beliefs, the instructional strategies they used during the enactment of the curriculum, as well as the outcomes of the enactment as perceived by the teachers and their students, and as reflected in the class observations. Some of the teachers' strategies applied during the enactment, such as the conversational model, were specifically designed for teaching APL‐based curricula. We found that the instructional strategies applied for the adapted articles were associated with cognitive and affective engagement, active learning, inquiry thinking, and understanding of the nature of science. Suitable teacher PCK promoted learning by inquiry in addition to learning on inquiry. Students' challenges were mainly linked to the comprehension of complex, multi‐stage, biotechnological processes and methods that are abundant throughout the curriculum and required the use of previous knowledge in new contexts. A complex interaction of factors, namely teachers' PCK, the APL genre, and the biotechnology content of the curriculum, shaped the instructional strategies of the new curriculum and the outcomes of its enactment  相似文献   

8.
This investigation examines the difficulties encountered by one graduate teaching assistant as she taught Physics for Elementary Education, a large‐enrollment, inquiry‐based science course taught at a public Midwestern university. The methodological approach of hermeneutic phenomenology served as the lens to investigate the research question, “What is the lived experience of a graduate teaching assistant as she learned to teach physics through inquiry to elementary education students?” We summarize the findings in terms of the blending of two conceptual frameworks: orientations to science teaching and professional identity. We learned that fundamental beliefs about the nature of science support certain orientations, and if those beliefs remain unchallenged, then the orientation is unlikely to change. Finally, we discuss implications for strategies that may assist college‐level instructors with changing their orientation to teaching science. © 2004 Wiley Periodicals, Inc. J Res Sci Teach 41: 584–602, 2004  相似文献   

9.
Design activities, when embedded in an inquiry cycle and appropriately scaffolded and supplemented with reflection, can promote the development of the habits of mind (scientific abilities) that are an important part of scientific practice. Through the Investigative Science Learning Environment (ISLE), students construct physics knowledge by engaging in inquiry cycles that replicate the approach used by physicists to construct knowledge. A significant portion of student learning occurs in ISLE instructional labs where students design their own experiments. The labs provide an environment for cognitive apprenticeship enhanced by formative assessment. As a result, students develop interpretive knowing that helps them approach new problems as scientists. This article describes a classroom study in which the students in the ISLE design lab performed equally well on traditional exams as ISLE students who did not engage in design activities. However, the design group significantly outperformed the non-design group while working on novel experimental tasks (in physics and biology), demonstrating the application of scientific abilities to an inquiry task in a novel content domain. This research shows that a learning environment that integrates cognitive apprenticeship and formative assessment in a series of conceptual design tasks provides a rich context for helping students build scientific habits of mind.  相似文献   

10.
This paper describes a series of projects on the design and implementation of ‘conceptual labs’ aimed at developing insightful learning, following work that began in 1994/1995. The main focus has been on courses in mechanics and electric circuit theory. The approach taken in designing these innovative curricula can be described as ‘design-based research’. A common feature in these learning environments is the use of technology as a tool to aid students’ inquiry. In addition, systematic variation, based on the theory of variation, has been introduced into the design of the assigned tasks. Results from conceptual inventories have demonstrated the success of conceptual labs. In the later projects, video recording was used to study students’ courses of action in labs. This paper describes how these studies have provided insights into conditions that are critical for learning and how these insights have helped the present author and his co-workers make further improvements to learning environments.  相似文献   

11.
Internet‐based science learning has been advocated by many science educators for more than a decade. This review examines relevant research on this topic. Sixty‐five papers are included in the review. The review consists of the following two major categories: (1) the role of demographics and learners' characteristics in Internet‐based science learning, such as demographic background, prior knowledge, and self‐efficacy; and (2) the learning outcomes derived from Internet‐based science learning, such as attitude, motivation, conceptual understanding, and conceptual change. Some important conclusions are drawn from the review. For example, Internet‐based science learning is equally favorable, or in some cases more so, to learning for female students compared to male students. The learner's control is essential for enhancing students' attitudes and motivation toward learning in Internet‐based science learning environments. Nevertheless, appropriate guidance from teachers, moderators, or the Internet‐based learning environment itself is still quite crucial in Internet‐based science learning. Recommendations for future research related to the effects of Internet‐based science learning on students' metacognitive reflections, epistemological development, and worldviews are suggested.  相似文献   

12.
13.
Empirical investigations on students’ conceptions of cell biology indicate major misunderstandings of scientific concepts even after thorough teaching. Therefore, the main aim of our research project was to investigate students’ difficulties in learning this topic and to study the impact of learning activities on students’ conceptions. Using the Model of Educational Reconstruction, a four‐phase design was carried out. Firstly, there was the clarification of science subject matter. Secondly, students’ conceptions were investigated, and finally, the learning activities were designed. An evaluation of these learning activities was carried out using five teaching experiments, each with three 9th grade students (15–16 years, Grammar school). Interpretation of students’ “pathways of thinking” and their conceptual change during instruction was framed theoretically by experiential realism. Theoretical framework, methods and outcomes of the study may contribute to a deeper understanding of students’ ways of thinking in the field of cell biology and reveal the process of conceptual development by using well planned learning activities.  相似文献   

14.
In introductory laboratory courses, many universities are turning from traditional laboratories with predictable outcomes to inquiry-inspired, project-based laboratory curricula. In these labs, students are allowed to design at least some portion of their own experiment and interpret new, undiscovered data. We have redesigned the introductory biology laboratory course at Brandeis University into a semester-long project-based laboratory that emphasizes concepts and contains an element of scientific inquiry. In this laboratory, students perform a site-directed mutagenesis experiment on the gene encoding human γD crystallin, a human eye lens protein implicated in cataracts, and assess the stability of their newly created protein with respect to wild-type crystallin. This laboratory utilizes basic techniques in molecular biology to emphasize the importance of connections between DNA and protein. This project lab has helped engage students in their own learning, has improved students' skills in critical thinking and analysis, and has promoted interest in basic research in biology.  相似文献   

15.
Learning to teach science as inquiry in the rough and tumble of practice   总被引:2,自引:0,他引:2  
This study examined the knowledge, beliefs and efforts of five prospective teachers to enact teaching science as inquiry, over the course of a one‐year high school fieldwork experience. Data sources included interviews, field notes, and artifacts, as these prospective teachers engaged in learning how to teach science. Research questions included 1) What were these prospective teachers' beliefs of teaching science? 2) To what extent did these prospective teachers articulate understandings of teaching science as inquiry? 3) In what ways, if any, did these prospective teachers endeavor to teach science as inquiry in their classrooms? 4) In what ways did the mentor teachers' views of teaching science appear to support or constrain these prospective teachers' intentions and abilities to teach science as inquiry? Despite support from a professional development school setting, the Interns' teaching strategies represented an entire spectrum of practice—from traditional, lecture‐driven lessons, to innovative, open, full‐inquiry projects. Evidence suggests one of the critical factors influencing a prospective teacher's intentions and abilities to teach science as inquiry, is the teacher's complex set of personal beliefs about teaching and of science. This paper explores the methodological issues in examining teachers' beliefs and knowledge in actual classroom practice. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 613–642, 2007.  相似文献   

16.
The traditional approach to the education of language minority students separates English language development from content instruction because it is assumed that English language proficiency is a prerequisite for subject matter learning. The authors of this article take the alternate view that the integration of inquiry science and language acquisition enhances learning in both domains. The report describes a conceptual framework for science–language integration and the development of a five‐level rubric to assess teachers' understanding of curricular integration. The science–language integration rubric describes the growth of teacher expertise as a continuum from a view of science and language as discreet unrelated domains to the recognition of the superordinate processes that create a synergistic relationship between inquiry science and language development. Examples from teacher interviews are used to illustrate teacher thinking at each level. © 2002 Wiley Periodicals, Inc. J Res Sci Teach 39: 664–687, 2002  相似文献   

17.
A study of docent‐led guided school tours at a museum of natural history was investigated. Researchers engaged in naturalistic inquiry to describe how natural history content was conveyed to students and what students gained from this model of touring. They also investigated how the content and pedagogy within the guided tour complemented recommendations from formal science standards documents and informal learning literature. About 30 visiting school groups in Grades 2–8 were observed. Teachers (n = 30) and select students (n = 85) were interviewed. Researchers found that tours were organized in a didactic way that conflicted with science education reform documents and research related to learning within informal contexts. Students' responses to interview questions indicated high satisfaction with the tours but low levels of science learning. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 200–218, 2003  相似文献   

18.
This study continues research previously conducted by a nine‐university collaborative, the Salish I Research Project, by exploring science teachers' beliefs and practices with regard to inquiry‐oriented instruction. In this study, we analyzed the relationship among secondary science teachers' preparation, their beliefs, and their classroom practices after completion of a course designed to provide authentic inquiry experiences. From Teacher Pedagogical Philosophy Interview data and Secondary Science Teacher Analysis Matrix observational data, we analyzed links between the teachers' conveyed beliefs and observed practice regarding the teachers' actions (TA) and students' actions (SA). Also presented is a listing of teachers' perceived influences from university preparation course work. Results indicated that 7 of the 8 teachers professed a belief in teacher‐centered or conceptual style with regard to TA and SA. The observational results indicated that 7 of the 8 teachers displayed a teacher‐centered or conceptual style with regard to TA and SA. Inconsistencies between interview and observational data were unexpected, as half of the teachers professed slightly greater teacher‐centered styles with regard to TA than what they actually practiced in their classrooms. All teachers reported that an inquiry‐based science course was valuable. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 43: 938–962, 2006  相似文献   

19.
This two‐year school‐wide initiative to improve teachers’ pedagogical skills in inquiry‐based science instruction using a constructivist sociocultural professional development model involved 30 elementary teachers from one school, three university faculty, and two central office content supervisors. Research was conducted for investigating the impact of the professional development activities on teachers’ practices, documenting changes in their philosophies, instruction, and the learning environment. This report includes teachers’ accounts of philosophical as well as instructional changes and how these changes shaped the learning environment. For the teachers in this study, examining their teaching practices in learner‐centered collaborative group settings encouraged them to critically analyze their instructional practices, challenging their preconceived ideas on inquiry‐based strategies. Additionally, other factors affecting teachers’ understanding and use of inquiry‐based strategies were highlighted, such as self‐efficacy beliefs, prior experiences as students in science classrooms, teacher preparation programs, and expectations due to federal, state, and local mandates. These factors were discussed and reconciled, as they constructed new understandings and adapted their strategies to become more student‐centered and inquiry‐based.  相似文献   

20.
What teaching practices foster inquiry and promote students to learn challenging subject matter in urban schools? Inquiry‐based instruction and successful inquiry learning and teaching in project‐based science (PBS) were described in previous studies (Brown & Campione, 1990 ; Crawford, 1999 ; Krajcik, Blumenfeld, Marx, Bass, & Fredricks, 1998 ; Krajcik, Blumenfeld, Marx, & Solloway, 1994 ; Minstrell & van Zee, 2000 ). In this article, we describe the characteristics of inquiry teaching practices that promote student learning in urban schools. Teaching is a major factor that affects both achievement of and attitude of students toward science (Tamir, 1998 ). Our involvement in reform in a large urban district includes the development of suitable learning materials and providing continuous and practiced‐based professional development (Fishman & Davis, in press; van Es, Reiser, Matese, & Gomez, 2002 ). Urban schools face particular challenges when enacting inquiry‐based teaching practices like those espoused in PBS. In this article, we describe two case studies of urban teachers whose students achieved high gains on pre‐ and posttests and who demonstrated a great deal of preparedness and commitment to their students. Teachers' attempts to help their students to perform well are described and analyzed. The teachers we discuss work in a school district that strives to bring about reform in mathematics and science through systemic reform. The Center for Learning Technologies in Urban Schools (LeTUS) collaborates with the Detroit Public Schools to bring about reform in middle‐school science. Through this collaboration, diverse populations of urban‐school students learn science through inquiry‐oriented projects and the use of various educational learning technologies. For inquiry‐based science to succeed in urban schools, teachers must play an important role in enacting the curriculum while addressing the unique needs of students. The aim of this article is to describe patterns of good science teaching in urban school. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 43: 722–745, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号