首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of inquiry‐based laboratory in college science classes is on the rise. This study investigated how five nonmajor biology students learned from an inquiry‐based laboratory experience. Using interpretive data analysis, the five students' conceptual ecologies, learning beliefs, and science epistemologies were explored. Findings indicated that students with constructivist learning beliefs tended to add more meaningful conceptual understandings during inquiry labs than students with positivist learning beliefs. All students improved their understanding of experiment in biology. Implications for the teaching of biology labs are discussed. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 986–1024, 2003  相似文献   

2.
3.
Despite significant research in the field of educational technology, there is still much we do not fully understand about students' experiences with technology. This article proposes that research in the field of educational technology would benefit from a sociological framing that pays attention to the understandings and lives of learners. Within a broader study that aimed to investigate students' use and value of technologies guided by Bourdieu's sociological theory, this article reports on qualitative embedded case study data of 12 students in years 9 and 10 from two Australian secondary schools. The article provides detailed accounts of students' experiences with technologies in various contexts with consideration of the milieu in which technology use occurred, illustrating the heterogeneous and complex network of influencing factors on students' technology practices. The findings and discussion augment the application of Bourdieu's concepts of field, habitus and capital as a tool to view and understand students' varied and complex experiences and relationships with technology.  相似文献   

4.
Recently, a growing awareness of the relationship between assessment and learning has resulted in several major critiques of existing practice and proposals for reform in science education at national and regional levels. One initiative advocates the use of carefully constructed performance tasks that give students opportunities to demonstrate their understanding as they would in the world outside of school. The purpose of this study was to explore relationships among school students' (n = 189) acquisition of meaningful understandings of protein synthesis. Students were tested before and after protein synthesis instruction using a multiple choice assessment format and an open‐ended assessment format. The assessment instrument was designed to measure students' interrelated understanding of protein synthesis. An independent t‐test analysis was conducted on the posttests to measure retention of factual information and gender differences. Analysis of student‐generated analogies also revealed unique patterns in students' understandings of this topic. This research provides information for educators on students' acquisition of meaningful understandings of protein synthesis and has many implications for educators. © 1999 John Wiley & Sons, Inc. J Res Sci Teach 36: 1–22, 1999.  相似文献   

5.
6.
Students' perceptions of literacy assessment processes and practices were investigated in two year long case studies undertaken in two English classrooms in two state high schools in Queensland, Australia. A range of qualitative data techniques was used to collect information related to students' previous experiences of assessment in primary school, students' responses to the first and last literacy assessment task of the school year, and their perceptions of assessment at the end of the year. The study showed that students' attitudes, beliefs, practices and understandings about assessment varied both within and across student groups and differences in students' accounts were evident both at the start and end of the school year. The findings highlight the role that students play in actively constructing knowledge about literacy assessment through their prior and current experiences with assessment tasks, and in their interactions with each other.  相似文献   

7.
Matriculation 2000 was a 5‐year project aimed at moving from the nationwide traditional examination system in Israel to a school‐based alternative embedded assessment. Encompassing 22 high schools from various communities in the country, the Project aimed at fostering deep understanding, higher‐order thinking skills, and students' engagement in learning through alternative teaching and embedded assessment methods. This article describes research conducted during the fifth year of the Project at 2 experimental and 2 control schools. The research objective was to investigate students' learning outcomes in chemistry and biology in the Matriculation 2000 Project. The assumption was that alternative embedded assessment has some effect on students' performance. The experimental students scored significantly higher than their control group peers on low‐level assignments and more so on assignments that required higher‐order thinking skills. The findings indicate that given adequate support and teachers' consent and collaboration, schools can transfer from nationwide or statewide standardized testing to school‐based alter‐native embedded assessment. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 34–52, 2003  相似文献   

8.
The purpose of this study was to explore relationships among school students' (N = 189) meaningful learning orientation, reasoning ability and acquisition of meaningful understandings of genetics topics, and ability to solve genetics problems. This research first obtained measures of students' meaningful learning orientation (meaningful and rote) and reasoning ability (preformal and formal). Students were tested before and after laboratory-based learning cycle genetics instruction using a multiple choice assessment format and an open-ended assessment format (mental model). The assessment instruments were designed to measure students' interrelated understandings of genetics and their ability to solve and interpret problems using Punnett square diagrams. Regression analyses were conducted to examine the predictive influence of meaningful learning orientation, reasoning ability, and the interaction of these variables on students' performance on the different tests. Meaningful learning orientation best predicted students' understanding of genetics interrelationships, whereas reasoning ability best predicted their achievement in solving genetics problems. The interaction of meaningful learning orientation and reasoning ability did not significantly predict students' genetics understanding or problem solving. Meaningful learning orientation best predicted students' performance on all except one of the open-ended test questions. Examination of students' mental model explanations of meiosis, Punnett square diagrams, and relationships between meiosis and the use of Punnett square diagrams revealed unique patterns in students' understandings of these topics. This research provides information for educators on students' acquisition of meaningful understandings of genetics. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
This study examined the relationship between students' out‐of‐school experiences and various factors associated with science learning. Participants were 1,014 students from two urban high schools (secondary schools). They completed a survey questionnaire and science assessment describing their science learning experiences across contexts and science understanding. Using multilevel statistical modelling, accounting for the multilevel structure of the data with students (Level 1) assigned to teachers (Level 2), the results indicated that controlling for student and classroom factors, students' ability to make connections between in‐school and out‐of‐school science experiences was associated with positive learning outcomes such as achievement, interest in science, careers in science, self‐efficacy, perseverance, and effort in learning science. Teacher practice connecting to students' out‐of‐school experiences was negatively associated with student achievement but has no association with other outcome measures. The mixed results found in this study alert us to issues and opportunities concerning the integration of students' out‐of‐school experiences to classroom instruction, and ultimately improving our understanding of science learning across contexts.  相似文献   

10.
This study has two purposes: (a) methodological—to design and test a new instrument able to reflect changes in attitudes toward science over time, and (b) investigative—to find out the effect of two similar curricular treatments on the attitudes of two classes. Items about the relevance of science to students' lives were developed, pilot‐tested, and analyzed using Rasch modeling. We then divided reliable items into three equivalent questionnaire forms. The final three forms of the questionnaire were used to assess high school students' attitudes. Over 18 weeks, one class used a core curriculum (Science and Sustainability) to learn science in the context of making decisions about societal issues. A second class used the same core curriculum, but with parts replaced by computer‐based activities (Convince Me) designed to enhance the coherence of students' arguments. Using traditional and Rasch modeling techniques, we assessed the degrees to which such instructional activities promoted students' beliefs that science is relevant to them. Both classes tended to agree more, over time, that science is relevant to their lives, and the increases were statistically equivalent between classes. This study suggests that, by using innovative, issue‐based activities, it is possible to enhance students' attitudes about the relevance of science. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 757–775, 2003  相似文献   

11.
This study explores how students' physics identities are shaped by their experiences in high school physics classes and by their career outcome expectations. The theoretical framework focuses on physics identity and includes the dimensions of student performance, competence, recognition by others, and interest. Drawing data from the Persistence Research in Science and Engineering (PRiSE) project, which surveyed college English students nationally about their backgrounds, high school science experiences, and science attitudes, the study uses multiple regression to examine the responses of 3,829 students from 34 randomly selected US colleges/universities. Confirming the salience of the identity dimension for young persons' occupational plans, the measure for students' physics identity used in this study was found to strongly predict their intended choice of a physics career. Physics identity, in turn, was found to correlate positively with a desire for an intrinsically fulfilling career and negatively with a desire for personal/family time and opportunities to work with others. Physics identity was also positively predicted by several high school physics characteristics/experiences such as a focus on conceptual understanding, real‐world/contextual connections, students answering questions or making comments, students teaching classmates, and having an encouraging teacher. Even though equally beneficial for both genders, females reported experiencing a conceptual focus and real‐world/contextual connections less frequently. The explicit discussion of under‐representation of women in science was positively related to physics identity for female students but had no impact for male students. Surprisingly, several experiences that were hypothesized to be important for females' physics identity were found to be non‐significant including having female scientist guest speakers, discussion of women scientists' work, and the frequency of group work. This study exemplifies a useful theoretical framework based on identity, which can be employed to further examine persistence in science, and illustrates possible avenues for change in high school physics teaching. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 978–1003, 2010  相似文献   

12.
This study examined the degree to which individual differences in students' (N = 232) concepts of size and scale are explained by factors such as students' innate sense of number, out‐of‐school science experiences, exposure to size and scale instruction, gender identities, and racial/ethnic identities. There is increasing emphasis being placed on the use of crosscutting concepts to promote deep learning in science. A multiple linear regression indicated students' racial/ethnic identities, experiences with scale outside of school, and exposure to size and scale instruction significantly added to the prediction model. Results from this study can both inform the movement toward incorporating crosscutting concepts into pedagogy as well as inform educators, administrators, and other stakeholders of the factors that may shape students' understanding of the cross‐cutting concept of scale, proportion, and quantity.  相似文献   

13.
The increased availability of computational modeling software has created opportunities for students to engage in scientific inquiry through constructing computer‐based models of scientific phenomena. However, despite the growing trend of integrating technology into science curricula, educators need to understand what aspects of these technologies promote student learning. This study used a multi‐method research approach involving both quantitative (Paper 1) and qualitative data (Paper 2) to examine student conceptual understanding of astronomical phenomena, relative to two different instructional experiences. Specifically, based on students' understandings of both spatial and declarative knowledge, we compared students who had constructed three‐dimensional computational models with students who had experienced traditional lecture‐based instruction. Quantitative analysis of pre‐interview and post‐interview data revealed that construction of three‐dimensional models best facilitated student understandings of spatially related astronomical concepts — whereas traditional instruction techniques best facilitated student understandings of fact‐oriented astronomical knowledge. This paper is the first in a two‐paper set that continues our line of research into whether problem‐based courses such as the Virtual Solar System course can be used as a viable alternative to traditional lecture‐based astronomy courses.  相似文献   

14.
Contending that justice experiences at school transmit messages about the wider society and affects students' attitudes and behaviour, we investigated the effects of students' sense of distributive and (school) procedural justice on their sense of belonging to school and on their social and institutional trust. The study was carried out among about 5000 eighth and ninth graders in a national sample of 48 middle schools in Israel in the 2010–2011 school year. The two‐level data—individual and school—were analyzed by HLM7 (Hierarchical Linear Model). Findings basically support our hypotheses: sense of distributive justice, especially, with regard to teachers'–students' relation positively affected students' sense of belonging and their trust in people and formal institutions; and school (aggregate) sense of procedural justice added to these positive effects. However, these attitudes were also dependent on sectorial affiliation (Jewish secular, Jewish religious, Arab), which explained a considerable portion of between‐school variation in student attitudes.  相似文献   

15.
This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers from intact classes. A researcher-constructed Biology Cognitive Skills Test was used to collect the quantitative data. Qualitative data were collected through interviews and students' personal documents. The data showed that the participants utilized concept mapping in various ways and they described positive experiences while being engaged in its use. The main challenge cited by teachers was the limited time available for more consistent use. The results showed that the use of concept mapping in advanced level biology can lead to learning gains that exceed those achieved in classes where mainly traditional methods are used. The students in the concept mapping experimental groups performed significantly better than their peers in the control group on both the lower-order (F(1)?=?21.508; p?<?.001) and higher-order (F(1)?=?42.842, p?<?.001) cognitive items of the biology test. A mean effect size of .56 was calculated representing the contribution of treatment to the students' performance on the test items.  相似文献   

16.
17.
Abstract

This article examines the social nature of teachers' conceptions by showing how teachers frame the “mismatch” of students' perceived abilities and the intended school curriculum through conversational category systems. This study compares the conversations of 2 groups of high school mathematics teachers addressing the Mismatch Problem when implementing equity-geared reforms. Although East High teachers challenged conceptions that were not aligned with a reform, South High teachers reworked a reform mandate to align with their existing conceptions. This research found that the teachers' conversational category systems modeled problems of practice; communicated assumptions about students, subject, and teaching; and were ultimately reflected in the curriculum. Because East High teachers supported greater numbers of students' success in advanced mathematics, this study considers the relation between teachers' understandings of student learning and the success of equity-geared math reforms. In addition, this study contributes to the understanding of how teacher conceptions of students are negotiated and reified in context, specifically through interactions with colleagues and experiences with school reform.  相似文献   

18.
Science includes more than just concepts and facts, but also encompasses scientific ways of thinking and reasoning. Students' cultural and linguistic backgrounds influence the knowledge they bring to the classroom, which impacts their degree of comfort with scientific practices. Consequently, the goal of this study was to investigate 5th grade students' views of explanation, argument, and evidence across three contexts—what scientists do, what happens in science classrooms, and what happens in everyday life. The study also focused on how students' abilities to engage in one practice, argumentation, changed over the school year. Multiple data sources were analyzed: pre‐ and post‐student interviews, videotapes of classroom instruction, and student writing. The results from the beginning of the school year suggest that students' views of explanation, argument, and evidence, varied across the three contexts with students most likely to respond “I don't know” when talking about their science classroom. Students had resources to draw from both in their everyday knowledge and knowledge of scientists, but were unclear how to use those resources in their science classroom. Students' understandings of explanation, argument, and evidence for scientists and for science class changed over the course of the school year, while their everyday meanings remained more constant. This suggests that instruction can support students in developing stronger understanding of these scientific practices, while still maintaining distinct understandings for their everyday lives. Finally, the students wrote stronger scientific arguments by the end of the school year in terms of the structure of an argument, though the accuracy, appropriateness, and sufficiency of the arguments varied depending on the specific learning or assessment task. This indicates that elementary students are able to write scientific arguments, yet they need support to apply this practice to new and more complex contexts and content areas. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 48: 793–823, 2011  相似文献   

19.
This paper presents a qualitative study conducted with faculty members who participated in a project funded by the National Science Foundation focusing on student development with Calibrated Peer Review (CPR)?, a web‐based tool created to promote writing and critical‐thinking skills. The purpose of the study was to gain an understanding of faculty members' thoughts and opinions about CPR. Interviews with 12 faculty members – six in biology, three in physics and three in mathematics – were audiotaped, transcribed and analysed. Findings revealed various aspects of instructors' experiences, thoughts and opinions regarding CPR. Findings provided information about how instructors used CPR, how CPR helped their teaching and enhanced students' critical‐thinking skills and writing skills, and positive and challenging aspects of CPR, as well as various observations and suggestions for others using CPR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号