首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This paper deals with the problem of non-fragile guaranteed cost control for a class of uncertain stochastic nonlinear time-delay systems. The parametric uncertainties are assumed to be time-varying and norm bounded. The time-delay factors are unknown and time-varying with known bounds. The aim of this paper is to design a memoryless non-fragile state feedback control law such that the closed-loop system is stochastically asymptotically stable in the mean square for all admissible parameter uncertainties and the closed-loop cost function value is not more than a specified upper bound. A new sufficient condition for the existence of such controllers is presented based on the linear matrix inequality (LMI) approach. Then, a convex optimization problem is formulated to select the optimal guaranteed cost controller which minimizes the upper bound of the closed-loop cost function. Numerical example is given to illustrate the effectiveness of the developed techniques.  相似文献   

2.
This paper deals with the simultaneous coordinated design of power system stabilizer (PSS) and the flexible ac transmission systems (FACTS) controller. The problem of guaranteed cost reliable control with regional pole constraint against actuator failures is investigated. The state feedback controllers are designed to guarantee the closed loop system satisfying the desired pole region, thus achieving satisfactory oscillation damping and settling time, and having the guaranteed cost performance simultaneously. The proposed controllers satisfy desired dynamic characteristics even in faults cases. The controller's parameters are obtained using the linear matrix inequalities (LMI) optimization. Simulation results validate the effectiveness of this approach.  相似文献   

3.
Vibration suppression of a structurally damped beam via open and closed-loop controls is investigated. In doing so, minimization of a weighted, energy-based performance measure leads to closed-form expressions for optimal open-loop parameters in terms of feedback gains. The control problem is then completed by optimizing these feedback parameters numerically. Methods to determine optimal terminal time of control are also presented. Furthermore, techniques are established to optimize the response and performance of a system experiencing a known feedback time delay. Different types of optimization are proposed and, for each one, the trade-off between performance and computational efficiency is fully discussed.  相似文献   

4.
This paper deals with the problem of delay-dependent dissipative control for a class of linear time-delay systems. We develop the design methods of dissipative static state feedback and dynamic output feedback controllers such that the closed-loop system is quadratically stable and strictly (Q,S,R)-dissipative. Sufficient conditions for the existence of the quadratic dissipative controllers are obtained by using linear matrix inequality (LMI) approach. Furthermore, a procedure of constructing such controllers from the solutions of LMIs is given. It is shown that the solvability of a dissipative controller design problem is implied by the feasibility of LMIs. The main results of this paper unify the existing results on H control and passive control.  相似文献   

5.
The paper deals with the optimal control of a distributed host structure consisting of two elastically connected complex continuous double-string system and subjected to certain excitation load. Investigation of the behavior of such system is of great theoretical and practical importance. A technique is proposed to actively damp out the undesired vibrations in the structures by a combination of applied actuators and displacement feedback gains. Two performance measures, involving energies at the terminal time as well as applied and feedback control efforts, are introduced. The optimality conditions of the applied actuators are derived by using the method of eigenfunction expansion and calculus of variations. The feedback parameters are numerically determined from the solution of a minimization problem. The proposed approach is illustrated by a numerical example involving a system which consists of two strings subjected to a continuous load.  相似文献   

6.
The paper considers the problem of designing PI controllers for industrial processes approximated by a first-order time-delayed model. The suggested frequency-domain approach is based on a normalized open-loop transfer function and makes use of the loci of constant stability margins and other performance indices in the parameter space. In this way, it is possible to evaluate the effects of uncertainties in the process parameters and, thus, control system robustness. Some examples show how the procedure operates.  相似文献   

7.
The present paper proposes a numerical approach to a linear optimal control problem with a quadratic performance index. In this technique, the time interval is divided into a number of time segments and all of the unknown functions which appear in the performance index are either interpolated linearly with respect to time or assumed to be constant in each time segment. The augmented performance index is discretized within each time element through the ordinary finite element technique.The main advantage of the present method is as follows: all of the necessary conditions for the performance index to be stationary can be expressed in the form of algebraic equations and the performance sequence of the state variables can be eliminated. As a result, the optimal control problem is reduced to the simple one of finding the sequence of control variables alone, which minimizes the quadratic performance index.A general formulation of the method is given and simple numerical examples are shown to demonstrate the effectiveness of the technique.  相似文献   

8.
In this paper, an iterative learning control strategy is presented for a class of nonlinear pure-feedback systems with initial state error using fuzzy logic system. The proposed control scheme utilizes fuzzy logic systems to learn the behavior of the unknown plant dynamics. Filtered signals are employed to circumvent algebraic loop problems encountered in the implementation of the existing controllers. Backstepping design technique is applied to deal with system dynamics. Based on the Lyapunov-like synthesis, we show that all signals in the closed-loop system remain bounded over a pre-specified time interval [0,T]. There even exist initial state errors, the norm of tracking error vector will asymptotically converge to a tunable residual set as iteration goes to infinity and the learning speed can be easily improved if the learning gain is large enough. A time-varying boundary layer is introduced to solve the problem of initial state error. A typical series is introduced in order to deal with the unknown bound of the approximation errors. Finally, two simulation examples show the feasibility and effectiveness of the approach.  相似文献   

9.
In this work, aiming at the trajectory tracking control of the quadrotor UAV subject to external disturbances and model uncertainties, a finite-time approach with preassigned performance guaranteed is proposed. First, the control system is decoupled into translational and rotational subsystems. Then, in both two subsystems, the performance bounds constructed by the newly established appointed-time performance functions are devised for guaranteeing the tracking performance, and the controllers are designed via applying the dynamic surface control technique with integral barrier Lyapunov functions involved. Moreover, finite-time tracking differentiators and finite-time multivariable disturbance observers are exploited to estimate the target signals and the lumped disturbances, respectively. Finally, two examples of simulation are carried out to validate the effectiveness and superiority of the proposed control method.  相似文献   

10.
This paper addresses the optimal controller problem for a linear system over linear observations with respect to different Bolza–Meyer criteria, where (1) the integral control and state energy terms are quadratic and the non-integral term is of the first degree or (2) the control energy term is quadratic and the state energy terms are of the first degree. The optimal solutions are obtained as sliding mode controllers, each consisting of a sliding mode filter and a sliding mode regulator, whereas the conventional feedback LQG controller fails to provide a causal solution. Performance of the obtained optimal controllers is verified in the illustrative example against the conventional LQG controller that is optimal for the quadratic Bolza–Meyer criterion. The simulation results confirm an advantage in favor of the designed sliding mode controllers.  相似文献   

11.
《Journal of The Franklin Institute》2023,360(14):10784-10814
This paper addresses coordinated path following for underactuated multi-unmanned surface vehicles (MUSVs) with specified performance (SP) under the lumped disturbances, proposes a novel adaptive periodic event-triggered path following control strategy via relative threshold event-triggered mechanism. First, the MUSVs communicates through the directed topology cooperative control structure, and maintains a safe distance between each USV along one curve. Meanwhile, the transformed error function is applied to establish the position errors constraint, guaranteeing that the position error of each USV is confined within the specified performance in guidance system. Then, RBF neural network and adaptive parameter method are applied to estimate the lumped disturbances and its error boundary, which makes MUSVs’ coordinated system have strong anti-disturbance ability. Besides, periodic event-triggered control base on relative threshold is introduced, which not only reduces the update frequency of controller and energy consumption, also avoids Zeno behavior phenomenon. Stability analysis proves that coordinated path following control system is uniformly ultimately bounded. Comparative simulations reveal the effectiveness of the coordinated path following control scheme.  相似文献   

12.
A method for finding the optimal control of a linear time varying delay system with quadratic performance index is discussed. The properties of the hybrid functions which consists of block-pulse functions plus Legendre polynomials are presented. The operational matrices of integration, delay and product are utilized to reduce the solution of optimal control to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.  相似文献   

13.
The maximum principle developed by Sloss et al. [Optimal control of structural dynamic systems in one space dimension using a maximum principle, J. Vibr. Control 11 (2005) 245–261] is used to determine the optimal control functions for a class of one-dimensional distributed parameter structures. The distributed parameter structures are governed by systems of fourth order hyperbolic equations with constant coefficients. A quadratic performance index is formulated as the cost functional of the problem and can be used to represent the energy of the structure and the force spent in the control process. The developed maximum principle establishes a theoretical foundation for the solution of the optimal control problem and relates the optimal control vector to an adjoint variable vector. The method of solution is outlined which involves reducing the original problem to a system of ordinary differential equations. The solution of the general problem is given and a structural control problem is solved to illustrate the solution procedure. The effectiveness of the proposed control solution is shown by comparing the behavior of controlled and uncontrolled systems.  相似文献   

14.
A decentralized stochastic control problem is solved for a linear system with two local controllers that exchange their control signals by transmission over noisy communication links. Each local controller contains a subsystem that approximately reconstructs the system state. A deterministic version of this problem is also considered. In each case expressions are presented for the performance of the controlled system.  相似文献   

15.
This paper presents the optimal regulator for a linear system with time delay in control input and a quadratic cost function. The optimal regulator equations are obtained using the duality principle, which is applied to the optimal filter for linear systems with time delay in observations, and then proved using the maximum principle. Performance of the obtained optimal regulator is verified in the illustrative example against the best linear regulator available for linear systems without delays. Simulation graphs and comparison tables demonstrating better performance of the obtained optimal regulator are included.  相似文献   

16.
In this work, we present a control structure based on the maximum allowable delay bound of networked control systems that takes the network-induced delay into account. Control structure design deals with the structural decisions of the control system including where to place the controllers and how to harmonize them. We construct a hierarchical control structure that consists of a main controller and a local closed-loop system consisting of a family of control configurations. Based on the maximum allowable delay bound for each local configuration, the local supervisor orchestrates switching between the constituent configurations. The stability condition is derived based on common Lyapunov function technique. An example is presented to demonstrated the efficacy of the proposed approach.  相似文献   

17.
In this paper, we considered a time-optimal control problem for a new type of linear parameter varying (LPV) system which is obtained through data identification in the process of dealing with actual problems. The addition of non-linear terms is compensation for the method that does not require linear expansion at the equilibrium point. Since the objective function is the terminal time which is an implicit function concerning decision variables, it is a non-standard optimal control problem with uncertain terminal time. To find the global optimal solution to this problem, firstly, the control parameterization method is used to transform it into a nonlinear optimization problem of parameter selection, and then the modifed particle swarm optimization (PSO) algorithm is combined to solve the equivalent nonlinear programming problem. Numerical examples are used to illustrate the effectiveness of the proposed algorithm.  相似文献   

18.
In this paper, the quadratic minimax optimal control of linear system with input-dependent uncertainty is studied. We show that it admits a unique solution and can be approximated by a sequence of finite-dimensional minimax optimal parameter selection problems. These finite-dimensional minimax optimal parameter selection problems are further reduced to scalar optimization problems which also admit unique solutions. Thus, the original minimax optimal control problem is solved via solving a sequence of simple scalar optimization problems. Numerical experiments are presented to illustrate the developed method.  相似文献   

19.
This paper deals with the problem of stabilization by state feedback control of Takagi–Sugeno (T–S) fuzzy discrete-time systems with multiple fixed delays while imposing positivity in closed-loop. The obtained results are presented under linear programming (LP) form. In particular, the synthesis of state feedback controllers is first solved in terms of Linear programming for the unbounded controls case. This result is then extended to the stabilization problem by nonnegative controls, and stabilization by bounded controls. The stabilization conditions are derived using the single Lyapunov–Krasovskii functional (LKF). An example of a real plant is studied to show the advantages of the design procedure. A comparison between linear programming and LMI approaches is presented.  相似文献   

20.
The study aims to explore the optimal actuator switching scheme of observer-based event-triggered state feedback control for distributed parameter systems. The performance of distributed parameter systems is improved through the observer-based event-triggered control, in which the state feedback is updated only when a triggered event happens. In such an event-triggered mechanism, the event-based closed-loop system and minimum time interval between consecutive events are bounded. Based on finite horizon linear quadratic regulator (LQR) optimal control, the optimal switching algorithm is proposed based on the event-triggered mechanism during an unfixed time interval. Finally, the proposed scheme is verified through a simulation case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号