首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates sliding mode control of stochastic singular Markovian jump systems with nonlinearity. The unmatched nonlinearity satisfies one-sided Lipschitz condition and quadratically inner-boundedness. In term of a new technical variable transformation, sufficient conditions are developed for nonlinear stochastic singular Markovian jump systems constrained on sliding manifold to guarantee stochastic admissibility and uniqueness of solution based on implicit function theorem. The sliding mode control law by which the trajectories of system can be compelled to the predefined sliding surface in finite time no matter what initial state value is, is synthesized. The derivative singular matrix is fully considered in the whole design process such that the derived conditions can be checked easily.The technical treatment of the nonlinear matrix term avoids the classification discussion of sliding mode controller design. Convex optimization problems subject to linear matrix inequalities are formulated to optimize the desired indexes of interest. Finally, the effectiveness of the proposed approach is illustrated by a numerical example and a practical example.  相似文献   

2.
This paper considers the tracking control problem for nonlinear Markov jump systems based on T–S fuzzy model approach with incomplete mode information. It is assumed that the mode transition rate matrix is not a priori knowledge and only partial information is available. Moreover, the mode where the system stays when operating is not fully accessible to the designed controller. In this incomplete mode information scenario, a hidden Markov model based mechanism is modified to simulate the mode deficiency mapping. The incomplete transition rate matrix is well defined in the form of a polynomial. Based on this, by constructing a polynomially parameter-dependent Lyapunov matrices and linear matrix techniques, sufficient conditions are established to ensure the stochastic stability and a prescribed tracking performance. The controller design scheme are presented by solving a series of LMIs. Examples are given in the end to illustrate the effectiveness of our proposed results.  相似文献   

3.
This paper studies the adaptive fuzzy fault-tolerant control design problem for a class of stochastic multi-input and multi-output (MIMO) nonlinear systems in pure-feedback form. The nonlinear systems under study contain unknown functions, unmeasured states and actuator faults, which are described by the loss of effectiveness and lock-in-place modes. With the help of fuzzy logic systems identifying uncertain stochastic nonlinear systems, a fuzzy state observer is established for estimating the unmeasured states. Based on the backstepping design technique with the nonlinear tolerant-fault control theory, an adaptive fuzzy output feedback faults-tolerant control approach is developed. It is proved that the proposed fault-tolerant control approach can guarantee that all the signals of the resulting closed-loop system are bounded in probability. Moreover, the observer errors and tracking errors can be regulated to a small neighborhood of the origin by choosing design parameters appropriately. A simulation example is provided to show the effectiveness of the proposed approach.  相似文献   

4.
A global decentralized low-complexity tracker design methodology is proposed for uncertain interconnected high-order nonlinear systems with unknown high powers. It is assumed that interconnected nonlinearities are bounded by completely unknown nonlinearities, rather than, a linear combination of high-ordered state variables. Compared with the existing decentralized results for interconnected nonlinear systems with known high powers, the decentralized robust controller, which achieves the pre-designable transient and steady-state tracking performance for each subsystem, is designed by employing nonlinear error surfaces with time-varying performance functions, regardless of unknown nonlinear interactions and high powers related to virtual and actual control variables. The proposed decentralized continuous robust low-complexity tracker is realized without the use of any adaptive or function approximation techniques for estimating unknown parameters and nonlinearities. The stability and preassigned tracking performance of the resulting decentralized low-complexity control system are thoroughly analyzed in the Lyapunov sense. Finally, simulation results on coupled underactuated mechanical systems are provided to show the effectiveness of the proposed theoretical result.  相似文献   

5.
6.
This paper is concerned with event-triggered adaptive fuzzy tracking control for high-order stochastic nonlinear systems. The approach of fuzzy logic systems (FLSs) approximation is extended to high-order stochastic nonlinear systems to deal with the unknown nonlinear uncertainties. A novel high-order adaptive fuzzy tracking controller is firstly presented via a backstepping approach and event-triggering mechanism which can mitigate the unnecessary waste of computation and communication resources. Based on the above techniques, frequently-used growth assumptions imposed on unknown system nonlinearities are removed and the influence for the high order is handled. The proposed high-order adaptive fuzzy tracking control method not only deals with the influence of high order, but also ensures that the tracking error converges to a small neighborhood of the origin in probability. Finally, the effectiveness of the proposed control method is illustrated by a numerical example.  相似文献   

7.
《Journal of The Franklin Institute》2022,359(18):10741-10764
This paper deals with the problem of disturbance rejection and synchronization of fractional-order complex dynamical networks subject to nonlinear coupling strength and discontinuous nonlinear functions. Notably, the nonlinear coupling strength is linearised by using a well-known Takagi-Sugeno fuzzy approach. The considered system is transformed into a nominal form by employing the uncertainty and disturbance estimator-based control approach, which simplifies the control objective and improves the system performance. Second, the uncertainty and disturbance estimator is incorporated into the traditional feedback control scheme to reject the unknown disturbance and uncertainty. Then, the required synchronization conditions for both the discontinuous and continuous fractional-order systems are obtained by using Lyapunov stability and fractional calculus theories. Last, numerical examples are provided to illustrate the efficiency of the proposed control strategy, wherein it is shown that the system yields better satisfactory tracking performance and high robustness against possible disturbance and uncertainties and finite set of jump discontinuous nonlinear functions. Moreover, the selection of appropriate filter design is discussed for various kinds of disturbance signals.  相似文献   

8.
In this paper, a new framework of the robust adaptive neural control for nonlinear switched stochastic systems is established in the presence of external disturbances and system uncertainties. In the existing works, the design of robust adaptive control laws for nonlinear switched systems mainly relies on the average dwell time method, while the design and analysis based on the model-dependent average dwell time (MDADT) method remains a challenge. An improved MDADT method is developed for the first time, which greatly relaxes the requirements of Lyapunov functions of any two subsystems. Benefiting from the improved MDADT, a switched disturbance observer for discontinuous disturbances is proposed, which realizes the real-time gain adjustment. For known and unknown piecewise continuous nonlinear functions, a processing method based on the tracking differentiator and the neural network is proposed, which skillfully guarantees the continuity of the control law. The theoretical proof shows that the semiglobal uniform ultimate boundedness of all closed-loop signals can be guaranteed under switching signals with MDADT property, and simulation results of the longitudinal maneuvering control at high angle of attack are given to further illustrate the effectiveness of the proposed framework.  相似文献   

9.
The tracking problem of high-order nonlinear multi-agent systems (MAS) with uncertainty is solved by designing adaptive sliding mode control. During the tracking process, node failures are possible to occur, a new agent replaces the failed one. Firstly, a distributed nonsingular terminal sliding mode(NTSM) control scheme is designed for the tracking agents. A novel continuous function is designed in the NTSM to eliminate the singularity and meanwhile guarantee the estimation of finite convergence time. Secondly, the unknown uncertainties in the tracking agents are compensated by proposing an adaptive mechanism in the NTSM. The adaptive mechanism adjusts the control input through estimating the derivative bound of the unknown uncertainties dynamically. Thirdly, the tracking problem with node failures and agent replacements is further investigated. Based on the constructed impulsive-dependent Lyapunov function, it is proved that the overall system will track the target in finite time even with increase of jump errors. Finally, comparison simulations are conducted to illustrate the effectiveness of proposed adaptive nonsingular terminal sliding mode control method for tracking systems suffering node failures.  相似文献   

10.
The purpose of fault diagnosis of stochastic distribution control (SDC) systems is to use the measured input and the system output probability density functions (PDFs) to obtain the fault information of the SDC system. When the target PDF is known, the purpose of fault tolerant control of stochastic distribution control system is to make the output PDF still track the given distribution using the fault tolerant controller. However, in practice, time delay may exist in the data (or image) processing, the modeling and transmission phases. When time delay is not considered, the effectiveness of the fault detection, diagnosis and fault tolerant control of stochastic distribution systems will be reduced. In this paper, the rational square-root B-spline is used to approach the output probability density function. In order to diagnose the fault in the dynamic part of such systems, it is then followed by the novel design of a nonlinear neural network observer-based fault diagnosis algorithm. The time delay term will be deleted in the stability proof of the observation error dynamic system. Based on the fault diagnosis information, a new fault tolerant controller based on PI tracking control is designed to make the post-fault probability density function still track the given distribution, which is dependent of the time delay term. Finally, simulations for the particle distribution control problem are given to show the effectiveness of the proposed approach.  相似文献   

11.
This paper presents an adaptive event-triggered filter of positive Markovian jump systems based on disturbance observer. A new adaptive event-triggering mechanism is constructed for the systems. A positive disturbance observer is designed for the systems to estimate the disturbance. A distributed output model of each subsystem of positive Markovian jump systems is introduced. Then, an adaptive event-triggering distributed filter is designed by employing stochastic copositive Lyapunov functions. All presented conditions are solvable in terms of linear programming. Under the designed disturbance observer and the distributed filter, the corresponding error system is stochastically stable. The filter design approach is also developed for discrete-time positive Markovian jump systems. The contribution of the paper lies in that: (i) A new adaptive event-triggering mechanism is established for positive systems, (ii) A positive disturbance observer is designed for the disturbance of positive Markovian jump systems, and (iii) The designed distributed filter can guarantee the stochastic stability of the error while existing filters in literature only achieve the stochastic gain stability of the error. Finally, two examples are given to illustrate the effectiveness of the proposed design.  相似文献   

12.
This paper addresses the problem of adaptive fault estimation and fault-tolerant control for a class of nonlinear non-Gaussian stochastic systems subject to time-varying loss of control effectiveness faults. In this work, time-varying faults, Lipschitz nonlinear property and general stochastic characteristics are taken into consideration in a unified framework. Instead of using the system output signal, the output distribution is adopted for shape control. Both the states and faults are simultaneously estimated by an adaptive observer. Then, a fault tolerant shape controller is designed to compensate for the faults and realize stochastic output distribution tracking. Both the fault estimation and the fault tolerant control schemes are designed based on linear matrix inequality (LMI) technique. Satisfactory performance has been obtained for a numerical simulation example. Furthermore the proposed scheme is successfully tested in a case study of particle size distribution control for an emulsion polymerization reactor.  相似文献   

13.
The adaptive asymptotic tracking control problem for a class of stochastic non-strict-feedback switched nonlinear systems is addressed in this paper. For the unknown continuous functions, some neural networks are used to approximate them online, and the dynamic surface control (DSC) technique is employed to develop the novel adaptive neural control scheme with the nonlinear filter. The proposed controller ensures that all the closed-loop signals remain semiglobally bounded in probability, at the same time, the output signal asymptotically tracks the desired signal in probability. Finally, a simulation is made to examine the effectiveness of the proposed control scheme.  相似文献   

14.
This paper investigates the tracking control problem for output constrained stochastic nonlinear systems under quantized input. The main challenge of considering such dynamics lies in the fact that theirs have both input and output constraints, making the standard backstepping technique fail. To address this challenge, the introduction of nonlinear mapping transforms the constrained nonlinear systems into unconstrained nonlinear systems, which not only avoids the emergence of feasibility conditions but also simplifies the structure of designed controller. The obstacle caused by quantized input is successfully resolved by exploiting the decomposition of hysteresis quantizer. Additionally, the uncertain nonlinearities are approximated by fuzzy logic systems during the control design process. Under the proposed quantized tracking control scheme, the output tracking error converges to an arbitrarily small neighborhood of origin and all signals in the closed-loop system remain bounded in probability. Simultaneously, it can make sure that the output constraint isn’t violated. Ultimately, both a numerical example and a practical example are provided to clarify the effectiveness of the control strategy.  相似文献   

15.
The PI control configuration for stabilization and signal tracking of nonlinear systems is investigated. Semiglobal asymptotic stability and semiglobal practical signal tracking of the controlled system are proven using results from the theory of nonlinear singularly perturbed systems.  相似文献   

16.
This paper is concerned with the probability-constrained tracking control problem for a class of time-varying systems with stochastic nonlinearities, stochastic noises and successively packet loss. The main purpose of this paper is to design a time-varying observer and tracking controller such that (1) the probabilities of both the estimation error and tracking error confined to given ellipsoidal sets are larger than prescribed constants, and (2) the ellipsoids are minimized in the sense of matrix norm at each time point. By using a stochastic analysis method, the probability constrained tracking control problem is solved and sufficient conditions are obtained in terms of recursive linear matrix inequalities. A recursive optimization algorithm is developed to design the observer and tracking controller such that not only the addressed probability constrained aim is satisfied, but also the ellipsoidal sets are minimized. At last, a simulation example is given to illustrate the effectiveness and applicability of the developed approach.  相似文献   

17.
Advanced fault detection and accommodation schemes are required for ensuring efficient and reliable operation of modern wind turbines. This paper presents a novel approach in designing a fault detection and diagnosis (FDD) and fault-tolerant control (FTC) scheme for a wind turbine using fuzzy modeling, identification and control techniques. First, an improved gain-scheduled proportional-integral (PI) control system based on fuzzy gain scheduling (FGS) technique for multi-input and multi-output wind turbine system is designed. Then, to accommodate sensor faults and based on a signal correction algorithm, an active fault-tolerant control system (AFTCS) is developed as an extension of the gain-scheduled PI control system. The AFTCS exploits the fault information from a model-based FDD scheme developed using fuzzy modeling and identification method. The proposed schemes are evaluated by a series of simulations on a well-known large off-shore wind turbine benchmark in the presence of wind turbulences, measurement noises, and different realistic fault scenarios. All results indicate high effectiveness and robustness of the designed control systems in both fault-free and faulty operations of the wind turbine.  相似文献   

18.
This paper develops the secure control strategy design issue for jump cyber–physical systems (CPSs) with malicious attacks. In the jump CPSs, the jump signals are assumed to obey the semi-Markov distribution with the transition probability depends on the stochastic sojourn-time, the physical plant and actuator simultaneous subject to the adversarial attack. A secure control strategy on robust sliding-mode control (SMC) is designed to deal with the malicious attacks. Firstly, an integral sliding-mode hyperplane is constructed, and the sliding-mode dynamics is discussed. Then, the slide-mode parameters are solved by the linear matrix inequality method with prescribed H∞ damping index. Furthermore, a robust sliding-mode controller is presented, and the reachability of the sliding-mode motion is analyzed. Finally, two examples are implemented to prove the potential of the secure control approach.  相似文献   

19.
For a continuous-time linear system with constant reference input, the network-based proportional-integral (PI) control is developed to solve the output tracking control problem by taking time-varying sampling and network-induced delays into account. A traditional PI control system is introduced to obtain the equilibriums of state and control input. Using the equilibriums, a discrete-time PI tracking controller in a network environment is constructed. The resulting network-based PI control system is described by an augmented system with two input delays and the output tracking objective is transformed into ensuring asymptotic stability of the augmented system. A delay-dependent stability condition is established by a discontinuous augmented Lyapunov–Krasovskii functional approach. The PI controller design result of in-wheel motor as a case study is provided in terms of linear matrix inequalities. Matlab simulation and experimental results resorting to a test-bed for ZigBee-based control of in-wheel motor are given to validate the proposed method.  相似文献   

20.
In this paper, a novel tracking control scheme for continuous-time nonlinear affine systems with actuator faults is proposed by using a policy iteration (PI) based adaptive control algorithm. According to the controlled system and desired reference trajectory, a novel augmented tracking system is constructed and the tracking control problem is converted to the stabilizing issue of the corresponding error dynamic system. PI algorithm, generally used in optimal control and intelligence technique fields, is an important reinforcement learning method to solve the performance function by critic neural network (NN) approximation, which satisfies the Lyapunov equation. For the augmented tracking error system with actuator faults, an online PI based fault-tolerant control law is proposed, where a new tuning law of the adaptive parameter is designed to tolerate four common kinds of actuator faults. The stability of the tracking error dynamic with actuator faults is guaranteed by using Lyapunov theory, and the tracking errors satisfy uniformly bounded as the adaptive parameters get converged. Finally, the designed fault-tolerant feedback control algorithm for nonlinear tracking system with actuator faults is applied in two cases to track the desired reference trajectory, and the simulation results demonstrate the effectiveness and applicability of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号