首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the event-triggered dynamic output feedback tracking control for large-scale interconnected systems with disturbances. For each node, a novel event-triggered mechanism is driven by local relative output tracking error to determine whether the signal will be transmitted. A two-step optimization is applied for dynamic output feedback controller design which guarantees robust stability of the system with an optimal H disturbance attenuation level. Finally, a simulation example of master-slave multiple vehicles is given to illustrate the effectiveness of the proposed scheme.  相似文献   

2.
The current paper addresses the fuzzy adaptive tracking control via output feedback for single-input single-output (SISO) nonlinear systems in strict-feedback form. Under the situation of system states being unavailable, the system output is used to set up the state observer to estimate the real system states. Furthermore, the estimation states are employed to design controller. During the control design process, fuzzy logic systems (FLSs) are used to model the unknown nonlinearities. A novel observer-based finite-time tracking control scheme is proposed via fuzzy adaptive backstepping and barrier Lyapunov function approach. The suggested fuzzy adaptive output feedback controller can force the output tracking error to meet the pre-specified accuracy in a fixed time. Meanwhile, all the closed-loop variables are bounded. Compared to some existing finite-time output feedback control schemes, the developed control strategy guarantees that the settling time and the error accuracy are independent of the uncertainties and can be specified by the designer. At last, the effectiveness and feasibility of the proposed control scheme are demonstrated by two simulation examples.  相似文献   

3.
In this paper, the development and experimental validation of a novel double two-loop nonlinear controller based on adaptive neural networks for a quadrotor are presented. The proposed controller has a two-loop structure: an outer loop for position control and an inner loop for attitude control. Similarly, both position and orientation controllers also have a two-loop design with an adaptive neural network in each inner loop. The output weight matrices of the neural networks are updated online through adaptation laws obtained from a rigorous error convergence analysis. Thus, a training stage is unnecessary prior to the neural network implementation. Additionally, an integral action is included in the controller to cope with constant disturbances. The error convergence analysis guarantees the achievement of the trajectory tracking task and the boundedness of the output weight matrix estimation errors. The proposed scheme is designed such that an accurate knowledge of the quadrotor parameters is not needed. A comparison against the proposed controller and two other well-known schemes is presented. The obtained results showed the functionality of the proposed controller and demonstrated robustness to parametric uncertainty.  相似文献   

4.
In practice, many controlled plants are equipped with MIMO non-affine nonlinear systems. The existing methods for tracking control of time-varying nonlinear systems mostly target the systems with special structures or focus only on the control based on neural networks which are unsuitable for real-time control due to their computation complexity. It is thus necessary to find a new approach to real-time tracking control of time-varying nonlinear systems. In this paper, a control scheme based on multi-dimensional Taylor network (MTN) is proposed to achieve the real-time output feedback tracking control of multi-input multi-output (MIMO) non-affine nonlinear time-varying discrete systems relative to the given reference signals with online training. A set of ideal output signals are selected by the given reference signals, the optimal control laws of the system relative to the selected ideal output signals are set by the minimum principle, and the corresponding optimal outputs are taken as the desired output signals. Then, the MTN controller (MTNC) is generated automatically to fit the optimal control laws, and the conjugate gradient (CG) method is employed to train the network parameters offline to obtain the initial parameters of MTNC for online learning. Addressing the time-varying characteristics of the system, the back-propagation (BP) algorithm is implemented to adjust the weight parameters of MTNC for its desired real-time output tracking control by the given reference signals, and the sufficient condition for the stability of the system is identified. Simulation results show that the proposed control scheme is effective and the actual output of the system tracks the given reference signals satisfactorily.  相似文献   

5.
In this paper, we study the problem of network-based synchronization of chaotic systems in Takagi–Sugeno (T–S) fuzzy form, in which the master and slave fuzzy chaotic systems are connected with a continuous-time controller through a network. In all communication channels, asynchronous samplings and external disturbances are considered. The asynchronously sampled state information of the master and slave systems received in the controller is treated by designing an observer for estimating the states of the master system. Then, based on the observation result, the problem of asynchronous samplings between the slave-controller and controller-slave channels is solved in two different cases. Sufficient conditions for the existence of the desired observer and controllers for each asynchronous cases are presented in the form of linear matrix inequalities. An numerical example is given to illustrate the validity and potential of the proposed new design techniques.  相似文献   

6.
7.
In this paper, global practical tracking is investigated via output feedback for a class of uncertain nonlinear systems subject to unknown dead-zone input. The nonlinear systems under consideration allow more general growth restriction, where the growth rate includes unknown constant and output polynomial function. Without the precise priori knowledge of dead-zone characteristic, an input-driven observer is designed by introducing a novel dynamic gain. Based on non-separation principle, a universal adaptive output feedback controller is proposed by combining dynamic high-gain scaling approach with backstepping method. The controller proposed guarantees that the closed-loop output can track any smooth and bounded reference signal by any small pre-given tracking error, while all closed-loop signals are globally bounded. Finally, simulation examples are given to illustrate the effectiveness of our dynamic output feedback control scheme.  相似文献   

8.
By taking account of uncertain slave system parameters, the main goal of this paper is to investigate exponential master–slave synchronization between two nearly identical generalized Lorenz systems via one control input, which including a single state proportional feedback, associated with system parameter estimated laws, which not including states of the master system. Sufficient conditions are provided for the guaranteed exponential stability of both synchronized errors and system parameter errors. Meanwhile, numerical studies are also performed to verify the effectiveness of presented schemes.  相似文献   

9.
This paper investigates the tracking control problem for output constrained stochastic nonlinear systems under quantized input. The main challenge of considering such dynamics lies in the fact that theirs have both input and output constraints, making the standard backstepping technique fail. To address this challenge, the introduction of nonlinear mapping transforms the constrained nonlinear systems into unconstrained nonlinear systems, which not only avoids the emergence of feasibility conditions but also simplifies the structure of designed controller. The obstacle caused by quantized input is successfully resolved by exploiting the decomposition of hysteresis quantizer. Additionally, the uncertain nonlinearities are approximated by fuzzy logic systems during the control design process. Under the proposed quantized tracking control scheme, the output tracking error converges to an arbitrarily small neighborhood of origin and all signals in the closed-loop system remain bounded in probability. Simultaneously, it can make sure that the output constraint isn’t violated. Ultimately, both a numerical example and a practical example are provided to clarify the effectiveness of the control strategy.  相似文献   

10.
对于非严格重复线性时变连续系统,初始迭代条件和参考轨迹在一定带宽范围内都是迭代变化的.提出一种非严格的迭代学习方法来控制跟踪整流.通过该方法所获得的控制器,能保证闭环系统的所有信号是全局有界的,能够使超出初始时间间隔的输出跟踪误差收敛到一个小的残差集内,该残差集大小取决于输入矩阵的估测误差.尤其是当输入矩阵已知的情况下,能够让超出的初始时间间隔输出跟踪误差趋近于零.  相似文献   

11.
In this paper, we consider output tracking for a class of MIMO nonlinear systems which are composed of coupled subsystems with vast mismatched uncertainties. First, all uncertainties influencing the performance of controlled outputs, which include internal unmodelled dynamics, external disturbances, and uncertain nonlinear interactions between subsystems, are refined into the total disturbance in the control channels of subsystems. The total disturbance is shown to be sufficiently reflected in the measured output of each subsystem so that it can be estimated in real time by an extended state observer (ESO) in terms of the measured outputs. Second, we decouple approximately the MIMO systems by cancelling the total disturbance based on ESO estimation so that each subsystem becomes approximately independent linear time invariant one without uncertainty and interaction with other subsystems. Finally, we design an ESO based output feedback for each subsystem separately to ensure that the closed-loop state is bounded, and the closed-loop output of each subsystem tracks practically a given reference signal. This is completely in comply with the spirit of active disturbance rejection control (ADRC). Some numerical simulations are presented to demonstrate the effectiveness of the proposed output feedback control scheme.  相似文献   

12.
A discrete-time output feedback quasi-sliding mode control scheme is proposed to realize the problem of robust tracking and model following for a class of uncertain linear systems in which states are unavailable and estimated states are not required. The proposed scheme guarantees the stability of the closed-loop system and achieves a very small ultimate boundedness of the tracking error in the presence of matched uncertain parameters and external slow disturbances. This scheme ensures the robustness to matched parametric uncertainties and disturbances. Since the proposed controller is designed without any switching element, the chattering phenomenon is eliminated. Furthermore, the knowledge of upper bound of uncertainties is not required. Simulation results demonstrate the effectiveness of the proposed scheme.  相似文献   

13.
Many dynamical systems are continuous-time non-square with unknown mismatched input and output disturbances. For such systems, a universal on-line robust optimal tracking control is often desirable. In this paper, the conventional proportional-integral-differential (PID) controller is utilized as a fictitious PID filter to shape the tracking error in the frequency-domain using a quadratic performance index as a weighting function, such that the robust PID-shaped PI tracker integrated with the equivalent input disturbance (EID) estimator is established to carry out the on-line robust optimal tracking control of the general disturbed system. The benefits and discrepancies of the proposed compensation improvement mechanism over the conventional optimal trackers for continuous-time non-square systems with/without unknown mismatched input and output disturbances are listed as follows: (i) It develops a new net EID estimator without any previously established constraints on the dimensions of the system and on the disturbances; (ii) It provides an efficient estimated-state-feedback-based EID estimator in contrast to the conventional output-feedback-based EID estimators; (iii) It is able to carry out on-line EID estimation of the tracking errors for systems with endogenous/exogenous output disturbances; (iv) It is a universal tracker which can be simply implemented as a plug-in EID estimator for most servo systems, to improve the performance of any existing observers/trackers which are not allowed to be removed from the system. The advantages of the proposed method over two existing outstanding approaches reported in the literature are pointed out using illustrative examples.  相似文献   

14.
In this paper, a solution for improvement of transient performance in adaptive control of nonlinear systems is proposed. An optimal adaptive controller based on a reset mechanism and a prescribed performance bound is devised. The suggested controller has the structure of adaptive backstepping controller in which the estimated parameters are reset to an optimal value. The designed controller ensures both the transient bound and the asymptotical convergence of the states. It is shown that the tracking error satisfies the prescribed performance bound all the time, besides the speed of the convergence rate is increased by resetting the estimated parameters. The results have been proved through both the analytical and simulation studies. The proposed method is applied to an Augmented Quarter Car Model as a case study. Simulation results verify the established theoretical consequences that the prescribed performance bound based optimal adaptive reset controller can enhance the transient performance of the adaptive controller.  相似文献   

15.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

16.
In this article, an adaptive fuzzy control method is proposed for induction motors (IMs) drive systems with unknown backlash-like hysteresis. First, the stochastic nonlinear functions existed in the IMs drive systems are resolved by invoking fuzzy logic systems. Then, a finite-time command filter technique is exploited to overcome the obstacle of “explosion of complexity” emerged in the classical backstepping procedure during the controller design process. Meanwhile, the effect of the filter errors generated by command filters is decreased by utilizing corresponding error compensating mechanism. To cope with the influence of backlash-like hysteresis input, an auxiliary system is constructed, in which the output signal is applied to compensate the effect of the hysteresis. The finite-time control technology is adopted to accelerate the response speed of the system and reduce the tracking error, and the stochastic disturbance and backlash-like hysteresis are considered to improve control accuracy. It’s shown that the tracking error can converge to a small neighborhood around the origin in finite-time under the constructed controller. Finally, the availability of the presented approach is validated through simulation results.  相似文献   

17.
This study presents an output backstepping control architecture based on command filter via Multilayer-Neural-Network Pre-Observer with compensator to realise the reference signal tracking of an arbitrarily switching nonlinear systems with nonseperated parameter. First, a multilayer neural network pre-observer is designed before backstepping procedures to servo reconstruct the system states which can not be obtained directly. The pre-observer has superior performance in neutralizing the states abrupt chattering caused by the arbitrarily switching parameter entered in the nonlinear structure. Next, observer error compensation mechanism is designed to compensate the state estimation and shrink the approximation error domain further. Then, the backstepping controller with compensation signal based on command filter is presented to realise the stable reference signal tracking. Last, the proposed control scheme guarantees the states of the closed-loop system bounded. This mechanism makes up the shortcoming of the traditional state observer and give more flexibility in reconstructing the systems states timely, then overcomes the obstacle of the arbitrarily switching parameterized system. Furthermore, compared with the existing traditional uniform robust uncertain controller, the developed backstepping control method combining with the pre-observer not only guarantees the states servo reconstruction and servo control of the switched system, but also improves the tracking performance. Finally, a low-velocity servo turnable switched system is extensively simulated to demonstrate the effectiveness of the developed controller.  相似文献   

18.
This paper investigates the decentralized tracking control problem for a class of strict-feedback interconnected nonlinear systems with unknown parameters, where the system states are unmeasurable and the interconnections are unknown. Different from the existing results, where the output is available all the time, we consider the case that the output is only available at the sampled instants, which means the failure of existing methods. By introducing a kind of sampled observer for each subsystem, the system states and unknown parameters are jointly estimated. Based on which, a totally decentralized output feedback control scheme is developed to achieve the desired tracking performance by applying backstepping technique, where a compensation mechanism is utilized to address the unknown interconnections from other subsystems. Subsequently, by using Lyapunov stability theory, it is proved that all the signals in the closed-loop system are bounded and the tracking errors converge to an adjustable neighbourhood of the origin. Finally, an example is used to illustrate the effectiveness of the proposed method.  相似文献   

19.
This paper studies the sampled outputs-based adaptive fault-tolerant control problem for a class of strict-feedback uncertain nonlinear systems, where the nonlinear functions are allowed to include the unmeasured system states. Within the framework, a sampled output observer is introduced to jointly estimate the system states and parameters. By combining the estimated states and the supervisory switching strategy, an adaptive fault-tolerant controller is designed to achieve the desirable tracking performance. By using Lyapunov stability theory, it is proved that all the signals of the closed-loop systems are bounded and the tracking error converges to an adjustable neighbourhood of the origin eventually both in the fault free and faulty cases. Especially, if the outputs are available all the time, the proposed output feedback fault-tolerant control method can ensure the tracking error satisfy the prescribed performance bounds regardless of the faults. Finally, two examples are used to illustrate the effectiveness of the proposed method.  相似文献   

20.
This paper concentrates on the output tracking control problem with L1-gain performance of positive switched systems. We adopt the multiple co-positive Lyapunov functions technique and conduct the dual design of the controller and the switching signal. Through introducing a new state variable, which is not the output error, the output tracking control problem of the original system is transformed into the stabilization problem of the dynamics system of this new state. The proposed approach is still effective even the output tracking control problem of any subsystem is unsolvable. According to the state being available or not, we establish the solvability conditions of the output tracking control problem for positive switched systems, respectively. In the end, a number example demonstrates the validity of the presented results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号