首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the H control problem for a class of networked control systems (NCSs) with time-varying delay that is less than one sampling period. By applying a new working mode of the actuator and considering state feedback controllers, a new discrete-time switched system model is proposed to describe the NCS. Based on the obtained switched system model, a sufficient condition is derived for the closed-loop NCS to be exponentially stable and ensure a prescribed H performance level. The obtained condition establishes relations among the delay length, the delay variation frequency, and the system performances of the closed-loop NCS. Moreover, a convex optimization problem is formulated to design the H controllers which minimize the H performance level. An illustrative example is given to show the effectiveness of the proposed results.  相似文献   

2.
This paper investigates the H guaranteed cost control problem for mode-dependent time-delay jump systems with norm-bounded uncertain parameters. Both distributed delays and input delays appear in the system model. Based on a matrix inequality, a sufficient condition for the existence of robust H guaranteed cost controller is derived, which stabilizes the considered system and guarantees that both the H performance level and a cost function have upper bounds for all admissible uncertainties. By the cone complementary linearization approach, the desired state-feedback controller can be constructed. A numerical example is provided to show the effectiveness of the proposed theoretical results.  相似文献   

3.
Robust fault detection for a class of nonlinear time-delay systems   总被引:1,自引:0,他引:1  
In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. Firstly, a reference residual model is introduced to formulate the robust fault detection filter design problem as an H model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying robust H optimization control technique, the existence conditions of the robust fault detection filter for nonlinear time-delay systems with unknown inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design example is used to demonstrate the validity and applicability of the proposed approach.  相似文献   

4.
In this paper, an analytic solution of nonlinear H robust controller is first proposed and used in a complete six degree-of-freedom nonlinear equations of motion of flight vehicle system with mass and moment inertia uncertainties. A special Lyapunov function with mass and moment inertia uncertainties is considered to solve the associated Hamilton-Jacobi partial differential inequality (HJPDI). The HJPDI is solved analytically, resulting in a nonlinear H robust controller with simple proportional feedback structure. Next, the control surface inverse algorithm (CSIA) is introduced to determine the angles of control surface deflection from the nonlinear H control command. The ranges of prefilter and loss ratio that guarantee stability and robustness of nonlinear H flight control system implemented by CSIA are derived. Real aerodynamic data, engine data and actuator system of F-16 aircraft are carried out in numerical simulations to verify the proposed scheme. The results show that the responses still keep good convergence for large initial perturbation and the robust stability with mass and moment inertia uncertainties in the permissible ranges of the prefilter and loss ratio for which this design guarantees stability give same conclusion.  相似文献   

5.
This paper deals with the problems of robust delay-dependent stability and H analysis for Markovian jump linear systems with norm-bounded parameter uncertainties and time-varying delays. In terms of linear matrix inequalities, an improved delay-range-dependent stability condition for Markovian jump systems is proposed by constructing a novel Lyapunov-Krasovskii functional with the idea of partitioning the time delay, and a sufficient condition is derived from the H performance. Numerical examples are provided to demonstrate efficiency and reduced conservatism of the results in this paper.  相似文献   

6.
This paper investigates the robust HH dynamic output feedback control problem for networked control systems (NCSs) with quantized measurements. The measurement losses of the communicated information are considered in an unreliable communication channel. The robust HH dynamic output feedback controllers are designed to handle the measurement losses and mitigate the quantization effects such that the resultant closed-loop NCS is mean-square stochastically stable with a prescribed HH disturbance attenuation performance. The controller existence conditions can be derived in terms of linear matrix inequalities (LMIs). Finally, an example is provided to illustrate the effectiveness of the proposed approach.  相似文献   

7.
In this paper, the problem of robust H filtering for uncertain systems with time-varying distributed delays is considered. The uncertainties under discussion are time varying but norm bounded. Based on the Lyapunov stability theory, sufficient condition for the existence of full order H filters is proposed by linear matrix inequality (LMI) approach such that the filtering error system is asymptotically sable and satisfies a prescribed attenuation level of noise. A numerical example is given to demonstrate the availability of the proposed method.  相似文献   

8.
This paper presents the central finite-dimensional H filter for nonlinear polynomial systems with multiplicative noise, that is suboptimal for a given threshold γ with respect to a modified Bolza-Meyer quadratic criterion including the attenuation control term with the opposite sign. In contrast to the previously obtained results, the paper reduces the original H filtering problem to the corresponding optimal H2 filtering problem, using the technique proposed in [1]. The paper presents the central suboptimal H filter for the general case of nonlinear polynomial systems with multiplicative noise, based on the optimal H2 filter given in [31]. The central suboptimal H filter is also derived in a closed finite-dimensional form for third (and less) degree polynomial system states. Numerical simulations are conducted to verify performance of the designed central suboptimal filter for nonlinear polynomial systems against the central suboptimal H filters available for polynomial systems with state-independent noise and the corresponding linearized system.  相似文献   

9.
In this paper two robust controllers for a multivariable vertical short take-off and landing (VSTOL) aircraft system are designed and compared. The aim of these controllers is to achieve robust stability margins and good performance in step response of the system. LQG/LTR method is a systematic design approach based on shaping and recovering open-loop singular values while mixed-sensitivity H method is established by defining appropriate weighting functions to achieve good performance and robustness. Comparison of the two controllers show that LQG method requires rate feedback to increase damping of closed-loop system, while H controller by only proper choose the weighting functions, meets the same performance for step response. Output robustness of both controllers is good but H controller has poor input stability margin. The net controller order of H is higher than the LQG/LTR method and the control effort of them is in the acceptable range.  相似文献   

10.
11.
This paper addresses the problem of robust H control for uncertain continuous time singular systems with state delays. A new singular-type complete quadratic Lyapunov-Krasovskii functional (LKF) is introduced, which combines with the discretization LKF method to synthesis problems. An improved bounded real lemma (BRL) is presented to ensure the system to be regular, impulse free and stable with H performance condition. Based on the BRL, a memoryless state feedback controller is designed via linear matrix inequalities (LMIs), which greatly reduces the disturbance attenuation level. Numerical examples are given to illustrate improvements over some existing results.  相似文献   

12.
This paper deals with the problems of non-fragile robust stochastic stabilization and robust H control for uncertain stochastic nonlinear time-delay systems. The parameter uncertainties are assumed to be time-varying norm-bounded appearing in both state and input matrices. The time-delay is unknown and time-varying with known bounds. The non-fragile robust stochastic stabilization problem is to design a memoryless non-fragile state feedback controller such that the closed-loop system is robustly stochastically stable for all admissible parameter uncertainties. The purpose of robust H control problem, in addition to robust stochastical stability requirement, is to reduce the effect of the disturbance input on the controlled output to a prescribed level. Using the Lyapunov functional method and free-weighting matrices, delay-dependent sufficient conditions for the solvability of these problems are established in terms of linear matrix inequality (LMI). Numerical example is provided to show the effectiveness of the proposed theoretical results.  相似文献   

13.
The focus of this paper is on the design of a HH decentralized observation and control approach for a class of nonlinear disturbed interconnected systems. The proposed scheme is formulated as an optimization problem in terms of linear matrix inequality (LMI) to compute the robust observation and control gain matrices simultaneously, to maximize the bounds on the nonlinearity which the system can tolerate without going unstable, to improve the performance of the proposed control strategy by minimizing the HH criterion and to ensure the stability of the closed loop system in the Lyapunov framework despite the exogenous disturbances applied to the subsystems. A simulation is provided on a 3-machine power system, which generators are strongly nonlinear interconnected, to show the efficiency of the designed approach.  相似文献   

14.
This paper studies the problem of HH filtering problem for a class of nonlinear time-varying delay systems with unideal communication links. Two defectives are concerned including measurement quantization and packet dropouts. The quantized measurements are transmitted to the filter via network, where the phenomena of packet loss are taken into account. By using Lyapunov–Krasovskii functional, a less conservative delay-dependent stability condition for the closed-loop NCSs is derived. The HH fuzzy controller, which is designed in terms of linear matrix inequalities (LMIs), is developed for the asymptotic stabilization of the closed-loop NCSs. Numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

15.
In this paper, a new approach to robust H filtering for a class of nonlinear systems with time-varying uncertainties is proposed in the LMI framework based on a general dynamical observer structure. The nonlinearities under consideration are assumed to satisfy local Lipschitz conditions and appear in both state and measured output equations. The admissible Lipschitz constants of the nonlinear functions are maximized through LMI optimization. The resulting H observer guarantees asymptotic stability of the estimation error dynamics with prespecified disturbance attenuation level and is robust against time-varying parametric uncertainties as well as Lipschitz nonlinear additive uncertainty.  相似文献   

16.
This paper investigates the problem of HH filtering for Markovian jump linear systems with time-varying delay. The aim of this problem is to design an HH filter that ensures stochastic stability of the filtering error system and a prescribed L2-induced gain from the noise signals to the estimation error, for all admissible uncertainties. For solving the problem, we transform the system under consideration into an interconnection system. Based on the system transformation and the stochastic scaled small gain theorem, stochastic stability of the original system is examined via the stochastic stability version of the bounded realness of the transformed forward system. The merit of the proposed approach lies in its reduced conservatism, which is made possible by a precise approximation of the time-varying delay and the stochastic scaled small gain theorem. The proposed HH filtering condition is demonstrated to be less conservative than most existing results. Moreover, the HH filter design condition is further presented via convex optimizations, whose effectiveness are also illustrated via numerical examples.  相似文献   

17.
This paper is concerned with the distributed H filtering problem for a class of sensor networks with stochastic sampling. System measurements are collected through a sensor network stochastically and the phenomena such as random measurement missing and quantization are also considered. Firstly, the stochastic sampling process of the sensor network is modeled as a discrete-time Markovian system. Then, the logarithmic quantization effect is transformed into the parameter uncertainty of the filtering system, and a set of binary variables is introduced to model the random measurement missing phenomenon. Finally, the resulting augmented system is modeled as an uncertain Markovian system with multiple random variables. Based on the Lyapunov stability theory and the stochastic system analysis method, a sufficient condition is obtained such that the augmented system is stochastically stable and achieves an average H performance level γ; the design procedure of the optimal distributed filter is also provided. A numerical example is given to demonstrate the effectiveness of the proposed results.  相似文献   

18.
This paper is concerned with the robust non-fragile filtering for a class of networked systems with distributed variable delays. We model such a complex delay system with an augmented switched system. For the filtering implementation uncertainty, a stochastic variable is employed to indicate random occurrence of the filter gain change, and a norm bound to measure the change size. The suitably weighted measurements are proposed for filter performance improvement, instead of direct use of the measurements themselves which may have significant delays and degrade the performance. With some improved stability and l2 gain analysis for the switched systems, a new sufficient condition is obtained such that the filtering error system is exponentially stable in the mean square sense and achieves a prescribed HH performance level. A numerical example is given to show the effectiveness of the proposed design.  相似文献   

19.
In this paper, the problem of H filtering for neutral systems with mixed time-varying delays and nonlinear perturbations is investigated. Some new delay-dependent sufficient conditions are presented to ensure that the filtering error system is asymptotically stable with a prescribed level of H noise attenuation. In addition, the design procedures for the existence of such filter are presented in terms of a set of linear matrix inequalities (LMIs). Slack variables and convex combination technique are adopted to reduce the conservatism of obtained results. Finally, three numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

20.
In this paper, the problem of delay-dependent non-fragile robust H∞H control for a class of discrete-time singular systems with state-delay and parameter uncertainties is investigated. Based on singular value decomposition approach, a delay-dependent sufficient condition for the H∞H control problem for a class of discrete-time singular systems is proposed by constructing generalized Lyapunov–Krasovskii function and a new difference inequality. A memoryless state feedback controller under controller gain perturbations is designed, which guarantees that, for all admissible uncertainties, the resultant closed-loop system is regular, causal, and stable with an H∞H norm bound constraint. Numerical examples in the last will show that our results have the better performance in conservativeness than some results reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号