首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Backgroundβ-Glucosidase assay is performed with purified or semipurified enzymes extracted from cell lysis. However, in screening studies, to find bacteria with β-glucosidase activity among many tested bacteria, a fast method without cell lysis is desirable. In that objective, we report an in vivo β-glucosidase assay as a fast method to find a β-glucosidase producer strain.ResultsThe method consists in growing the strains for testing in a medium supplemented with the artificial substrate p-nitrophenyl-β-glucopyranoside (pNPG). The presence of β-glucosidases converts the substrate to p-nitrophenol (pNP), a molecule that can be easily measured in the supernatant spectrophotometrically at 405 nm. The assay was evaluated using two Bifidobacterium strains: Bifidobacterium longum B7254 strain that lacks β-glucosidase activity and Bifidobacterium pseudocatenulatum B7003 strain that shows β-glucosidase activity. The addition of sodium carbonate during pNP measurement increases the sensitivity of pNP detection and avoids the masking of absorbance by the culture medium. Furthermore, we show that pNP is a stable enzymatic product, not metabolized by bacteria, but with an inhibitory effect on cell growth. The β-glucosidase activity was measured as units of enzyme per gram per minute per dry cell weight. This method also allowed the identification of Lactobacillus strains with higher β-glucosidase activity among several lactobacillus species.ConclusionThis in vivo β-glucosidase assay can be used as an enzymatic test on living cells without cell disruption. The method is simple, quantitative, and recommended, especially in studies screening for bacteria not only with β-glucosidase activity but also with high β-glucosidase activity.  相似文献   

2.
This study describes the development and testing of a magnetic microfluidic chip (MMC) for trapping and isolating cells tagged with superparamagnetic beads (SPBs) in a microfluidic environment for selective treatment and analysis. The trapping and isolation are done in two separate steps; first, the trapping of the tagged cells in a main channel is achieved by soft ferromagnetic disks and second, the transportation of the cells into side chambers for isolation is executed by tapered conductive paths made of Gold (Au). Numerical simulations were performed to analyze the magnetic flux and force distributions of the disks and conducting paths, for trapping and transporting SPBs. The MMC was fabricated using standard microfabrication processes. Experiments were performed with E. coli (K12 strand) tagged with 2.8 μm SPBs. The results showed that E. coli can be separated from a sample solution by trapping them at the disk sites, and then isolated into chambers by transporting them along the tapered conducting paths. Once the E. coli was trapped inside the side chambers, two selective treatments were performed. In one chamber, a solution with minimal nutrition content was added and, in another chamber, a solution with essential nutrition was added. The results showed that the growth of bacteria cultured in the second chamber containing nutrient was significantly higher, demonstrating that the E. coli was not affected by the magnetically driven transportation and the feasibility of performing different treatments on selectively isolated cells on a single microfluidic platform.  相似文献   

3.
Ma Q  Chen C  Wei S  Chen C  Wu LF  Song T 《Biomicrofluidics》2012,6(2):24107-2410712
Magnetotactic bacteria (MTB) are capable of swimming along magnetic field lines. This unique feature renders them suitable in the development of magnetic-guided, auto-propelled microrobots to serve in target molecule separation and detection, drug delivery, or target cell screening in a microfluidic chip. The biotechnology to couple these bacteria with functional loads to form microrobots is the critical point in its application. Although an immunoreaction approach to attach functional loads to intact MTB was suggested, details on its realization were hardly mentioned. In the current paper, MTB-microrobots were constructed by attaching 2 μm diameter microbeads to marine magnetotactic ovoid MO-1 cells through immunoreactions. These microrobots were controlled using a special control and tracking system. Experimental results prove that the attachment efficiency can be improved to ∼30% via an immunoreaction. The motility of the bacteria attached with different number of loads was also assessed. The results show that MTB can transport one load at a velocity of ∼21 μm/s and still move and survive for over 30 min. The control and tracking system is fully capable of directing and monitoring the movement of the MTB-microrobots. The rotating magnetic fields can stop the microrobots by trapping them as they swim within a circular field with a controllable size. The system has potential use in chemical analyses and medical diagnoses using biochips as well as in nano/microscale transport.  相似文献   

4.
We present a method capable of rapidly (∼20 s) determining the density and mass of a single leukemic cell using an optically induced electrokinetics (OEK) platform. Our team had reported recently on a technique that combines sedimentation theory, computer vision, and micro particle manipulation techniques on an OEK microfluidic platform to determine the mass and density of micron-scale entities in a fluidic medium; the mass and density of yeast cells were accurately determined in that prior work. In the work reported in this paper, we further refined the technique by performing significantly more experiments to determine a universal correction factor to Stokes'' equation in expressing the drag force on a microparticle as it falls towards an infinite plane. Specifically, a theoretical model for micron-sized spheres settling towards an infinite plane in a microfluidic environment is presented, and which was validated experimentally using five different sizes of micro polystyrene beads. The same sedimentation process was applied to two kinds of leukemic cancer cells with similar sizes in an OEK platform, and their density and mass were determined accordingly. Our tests on mouse lymphocytic leukemia cells (L1210) and human leukemic cells (HL-60) have verified the practical viability of this method. Potentially, this new method provides a new way of measuring the volume, density, and mass of a single cell in an accurate, selective, and repeatable manner.  相似文献   

5.
Dammann C  Nöding B  Köster S 《Biomicrofluidics》2012,6(2):22009-2200910
The structure and function of biological systems, for example, cells and proteins, depend strongly on their chemical environment. To investigate such dependence, we design a polydimethylsiloxane-based microfluidic device to encapsulate biological systems in picoliter-sized drops. The content of each individual drop is tuned in a defined manner. As a key feature of our method, the individual chemical composition is determined and related to the drop content. In our case, the drop content is imaged using microscopy methods, while the drops are immobilized to allow for long-time studies. As an application of our device, we study the influence of divalent ions on vimentin intermediate filament networks in a quantitative way by tuning the magnesium concentration from drop to drop. This way we are able to directly image the effect of magnesium on the fluorescently tagged protein in a few hundreds of drops. Our study shows that with increasing magnesium concentration in the drops, the compaction of the networks becomes more pronounced. The degree of compaction is characterized by different morphologies; freely fluctuating networks are observed at comparatively low magnesium concentrations of 5–10 mM, while with increasing magnesium concentration reaching 16 mM they develop into fully aggregated networks. Our approach demonstrates how a systematic study of interactions in biological systems can benefit from the exceptional controllability of microfluidic methods.  相似文献   

6.
We present a method to perform sample concentration within a lab-on-a-chip using a microfluidic structure which controls the liquid-gas interface through a micropillar array fabricated in polydimethylsiloxane between microfluidic channels. The microstructure confines the liquid flow and a thermal gradient is used to drive evaporation at the liquid-gas-interface. The evaporation occurs in-plane to the microfluidic device, allowing for precise control of the ambient environment. This method is demonstrated with a sample containing 1 μm, 100 nm fluorescent beads and SYTO-9 labelled Escherichia coli bacteria. Over 100 s, the fluorescent beads and bacteria are concentrated by a factor of 10.  相似文献   

7.
The way in which bacterial communities colonize flow in porous media is of importance, but basic knowledge on the dynamic of these phenomena is still missing. The aim of this work is to develop microfluidic experiments in order to progress in the understanding of bacteria capture in filters and membranes. PDMS microfluidic devices mimicking filtration processes have been developed to allow a direct dynamic observation of bacteria across 10 or 20 μm width microchannels. When filtered in such devices, bacteria behave surprisingly: Escherichia coli, Pseudomonas aeruginosa or Staphylococcus aureus accumulate in the downstream zone of the filter and form large streamers which oscillate in the flow. In this study, streamer formation is put in evidence for bacteria suspension in non nutritive conditions in less than 1 h. This result is totally different from the one observed in same system with “inert” particles or dead bacteria which are captured in the bottleneck zone and are accumulated in the upstream zone. Observations within different flow geometries (straight channels, connected channels, and staggered row pillars) show that the bacteria streamer development is influenced by the flow configuration and, particularly by the presence of tortuosity within the microchannels zone. These results are discussed at the light of 3D flow simulations. In confined systems and in laminar flow, there is secondary flow (z-velocities) superimposed to the streamwise motion (in xy plane). The presence of the secondary flow in the microsystems has an effect on the bacterial adhesion. A scenario in three steps is established to describe the formation of the streamers and to explain the positive effect of tortuous flow on the development kinetics.  相似文献   

8.
Fluid dynamics of mucus plug rupture is important to understand mucus clearance in lung airways and potential effects of mucus plug rupture on epithelial cells at lung airway walls. We established a microfluidic model to study mucus plug rupture in a collapsed airway of the 12th generation. Mucus plugs were simulated using Carbopol 940 (C940) gels at concentrations of 0.15%, 0.2%, 0.25%, and 0.3%, which have non-Newtonian properties close to healthy and diseased lung mucus. The airway was modeled with a polydimethylsiloxane microfluidic channel. Plug motion was driven by pressurized air. Global strain rates and shear stress were defined to quantitatively describe plug deformation and rupture. Results show that a plug needs to overcome yield stress before deformation and rupture. The plug takes relatively long time to yield at the high Bingham number. Plug length shortening is the more significant deformation than shearing at gel concentration higher than 0.15%. Although strain rates increase dramatically at rupture, the transient shear stress drops due to the shear-thinning effect of the C940 gels. Dimensionless time-averaged shear stress, Txy, linearly increases from 3.7 to 5.6 times the Bingham number as the Bingham number varies from 0.018 to 0.1. The dimensionless time-averaged shear rate simply equals to Txy/2. In dimension, shear stress magnitude is about one order lower than the pressure drop, and one order higher than yield stress. Mucus with high yield stress leads to high shear stress, and therefore would be more likely to cause epithelial cell damage. Crackling sounds produced with plug rupture might be more detectable for gels with higher concentration.  相似文献   

9.
Separation and sorting of biological entities (viruses, bacteria, and cells) is a critical step in any microfluidic lab-on-a-chip device. Acoustofluidics platforms have demonstrated their ability to use physical characteristics of cells to perform label-free separation. Bandpass-type sorting methods of medium-sized entities from a mixture have been presented using acoustic techniques; however, they require multiple transducers, lack support for various target populations, can be sensitive to flow variations, or have not been verified for continuous flow sorting of biological cells. To our knowledge, this paper presents the first acoustic bandpass method that overcomes all these limitations and presents an inherently reconfigurable technique with a single transducer pair for stable continuous flow sorting of blood cells. The sorting method is first demonstrated for polystyrene particles of sizes 6, 10, and 14.5 μm in diameter with measured purity and efficiency coefficients above 75 ± 6% and 85 ± 9%, respectively. The sorting strategy was further validated in the separation of red blood cells from white blood cells and 1 μm polystyrene particles with 78 ± 8% efficiency and 74 ± 6% purity, respectively, at a flow rate of at least 1 μl/min, enabling to process finger prick blood samples within minutes.  相似文献   

10.
Wei Hou H  Gan HY  Bhagat AA  Li LD  Lim CT  Han J 《Biomicrofluidics》2012,6(2):24115-2411513
Sepsis is an adverse systemic inflammatory response caused by microbial infection in blood. This paper reports a simple microfluidic approach for intrinsic, non-specific removal of both microbes and inflammatory cellular components (platelets and leukocytes) from whole blood, inspired by the invivo phenomenon of leukocyte margination. As blood flows through a narrow microchannel (20 × 20 µm), deformable red blood cells (RBCs) migrate axially to the channel centre, resulting in margination of other cell types (bacteria, platelets, and leukocytes) towards the channel sides. By using a simple cascaded channel design, the blood samples undergo a 2-stage bacteria removal in a single pass through the device, thereby allowing higher bacterial removal efficiency. As an application for sepsis treatment, we demonstrated separation of Escherichia coli and Saccharomyces cerevisiae spiked into whole blood, achieving high removal efficiencies of ∼80% and ∼90%, respectively. Inflammatory cellular components were also depleted by >80% in the filtered blood samples which could help to modulate the host inflammatory response and potentially serve as a blood cleansing method for sepsis treatment. The developed technique offers significant advantages including high throughput (∼1 ml/h per channel) and label-free separation which allows non-specific removal of any blood-borne pathogens (bacteria and fungi). The continuous processing and collection mode could potentially enable the return of filtered blood back to the patient directly, similar to a simple and complete dialysis circuit setup. Lastly, we designed and tested a larger filtration device consisting of 6 channels in parallel (∼6 ml/h) and obtained similar filtration performances. Further multiplexing is possible by increasing channel parallelization or device stacking to achieve higher throughput comparable to convectional blood dialysis systems used in clinical settings.  相似文献   

11.
Superhydrophobic surfaces are widely used in many industrial settings, and mainly consist of rough solid protrusions that entrap air to minimize the liquid/solid area. The stability of the superhydrophobic state favors relatively small spacing between protrusions. However, this in turn increases the lateral adhesion force that retards the mobility of drops. Here we propose a novel approach that optimizes both properties simultaneously. Inspired by the hydrophobic leaves of Salvinia molesta and the slippery Nepenthes pitcher plants, we designed a Salvinia-like slippery surface (SSS) consisting of protrusions with slippery heads. We demonstrate that compared to a control surface, the SSS exhibits increased stability against pressure and impact, and enhanced lateral mobility of water drops as well as reduced hydrodynamic drag. We also systematically investigate the wetting dynamics on the SSS. With its easy fabrication and enhanced performance, we envision that SSS will be useful in a variety of fields in industry.  相似文献   

12.
One of the main uses of adenosine triphosphate (ATP) within mammalian cells is powering the Na+/K+ ATPase pumps used to maintain ion concentrations within the cell. Since ion concentrations determine the cytoplasm conductivity, ATP concentration is expected to play a key role in controlling the cytoplasm conductivity. The two major ATP production pathways within cells are via glycolysis within the cytoplasm and via the electron transport chain within the mitochondria. In this work, a differential detector combined with dielectrophoretic (DEP) translation in a microfluidic channel was employed to observe single cell changes in the cytoplasm conductivity. The DEP response was made sensitive to changes in cytoplasm conductivity by measuring DEP response versus media conductivity and using double shell models to choose appropriate frequencies and media conductivity. Dielectric response of Chinese hamster ovary (CHO) cells was monitored following inhibition of the mitochondria ATP production by treatment with oligomycin. We show that in CHO cells following exposure to oligomycin (8 μg/ml) the cytoplasm conductivity drops, with the majority of the change occurring within 50 min. This work demonstrates that dielectric effects due to changes in ATP production can be observed at the single cell level.  相似文献   

13.
BackgroundFreeze-drying is known as one of the best methods to preserve bacterial strains. Protectant is the key factor affecting the survival rate of freeze-dried strains. In addition, salinity, bacterial suspension concentration, drying time, and other factors can also affect the survival rate of strains to varying degrees. At present, there are relatively few studies on freeze-drying preservation of marine bacteria. In the present study, we performed the freeze-drying protectant screening and optimized the preservation conditions for Pseudoalteromonas nigrifaciens, which is widely distributed in marine environment. The protective effects of the screened protectants were verified by 18 other marine bacterial strains.ResultsThe results indicated that the combination of 5.0% (w/v) lactose, 5.0% (w/v) mannitol, 5.0% (w/v) trehalose, 10.0% (w/v) skim milk powder, 0.5% (w/v) ascorbic acid and 0.5% (w/v) gelatin was the best choice for the preservation of P. nigrifaciens. The suggested salinity and concentration of initial cell suspension were 10 g/L NaCl and 1.0 × 109 CFU/mL, respectively. Furthermore, stationary-phase cells were the best choice for the freeze-drying process. The highest survival rate of P. nigrifaciens reached 52.8% when using 5–10% (w/v) skim milk as rehydration medium. Moreover, the other 18 marine strains belonging to Pseudoalteromonas, Vibrio, Photobacterium, Planomicrobium, Edwardsiella, Enterococcus, Bacillus, and Saccharomyces were freeze-dried under the abovementioned conditions. Their survival rates were 2.3–95.1%.ConclusionCollectively, our results supported that the protectant mixture and parameters were beneficial for lyophilization of marine bacteria.How to cite: Zhang Z, Yu Y, Wang Y, et al. Development of new protocol for freeze-drying preservation of Pseudoalteromonas nigrifaciens and its protective effect on other marine bacteria. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2019.12.006.  相似文献   

14.
BackgroundWe aimed to test the possibility of improving polypeptide production from soybean meal fermentation by engineered Aspergillus oryzae strains. Four different protease genes were cloned and transformed into wild-type A. oryzae, and the engineered A. oryzae strains were then used for soybean meal fermentation.ResultsThe results showed different degrees of improvement in the protease activity of the four transformants when compared with wild-type A. oryzae. A major improvement in the polypeptide yield was achieved when these strains were used in soybean meal fermentation. The polypeptide conversion rate of one of the four transformants, A. oryzae pep, reached 35.9%, which was approximately twofold higher than that exhibited by wild-type A. oryzae. Amino acid content analysis showed that the essential amino acid content and amino acid composition of the fermentation product significantly improved when engineered A. oryzae strains were used for soybean meal fermentation.ConclusionsThese findings suggest that cloning of microbial protease genes with good physicochemical properties and expressing them in an ideal host such as A. oryzae is a novel strategy to enhance the value of soybean meal.  相似文献   

15.
在医学应用领域,合成生物学以人工设计的基因线路改造人体自身细胞,或改造细菌、病毒等人工生命体,再使其间接作用于人体。这些经人工设计的生命体能够感知疾病特异信号或人工信号、特异性靶向异常细胞和病灶区域、表达报告分子或释放治疗药物,从而实现对人体生理状态的监测,以及对肿瘤、代谢疾病、耐药菌感染等典型疾病的诊断与治疗。文章将综述了合成生物学的医学应用领域近期的一些研究进展。  相似文献   

16.
Background1,3-Propanodiol (1,3-PD), is used in the production of polytrimethylene terephthalate (PTT), an aromatic polyester that exhibits high elastic recoveries. It is also employed as a supplement with low solidification properties, a solvent and a lubricant in the formof propylene glycol. 1,3-PD is effectively synthesized by a microbiological way from crude glycerol. The main problem of this technology is using a high concentration of glycerol, which is a limiting factor for bacteria cells growth (especially in batch fermentation).ResultsIn this work, the influence of different glycerol concentration in batch fermentation on Clostridium butyricum DSP1 metabolism was investigated. The biomass was concentrated for two times with the use of membrane module (in case of increasing kinetic parameters). Increased optical density of bacteria cells six times increased the productivity of 1,3-PD in cultivation with 20 g/L of glycerol at the beginning of the process, and more than two times in cultivation with 60–80 g/L. Also the possibility of complete attenuation of 140 g/L of crude glycerol in the batch fermentation was investigated. During the cultivation, changes of protein profiles were analyzed. The most significant changes were observed in the cultivation in the medium supplemented with 80 g/L of glycerol. They related mainly to the DNA protein reconstructive systems, protective proteins (HSP), and also the enzymatic catalysts connected with glycerol metabolic pathway.ConclusionsThe application of filtration module in batch fermentation of crude glycerol by C. butyricum DSP1 significantly increased the productivity of the process.  相似文献   

17.
BackgroundThe increasing rate of breast cancer globally requires extraordinary efforts to discover new effective sources of chemotherapy with fewer side effects. Glutaminase-free l-asparaginase is a vital chemotherapeutic agent for various tumor malignancies. Microorganisms from extreme sources, such as marine bacteria, might have high l-asparaginase productivity and efficiency with exceptional antitumor action toward breast cancer cell lines.Resultsl-Asparaginase-producing bacteria, Bacillus velezensis isolated from marine sediments, were identified by 16S rRNA sequencing. l-Asparaginase production by immobilized cells was 61.04% higher than that by free cells fermentation. The significant productivity of enzyme occurred at 72 h, pH 6.5, 37°C, 100 rpm. Optimum carbon and nitrogen sources for enzyme production were glucose and NH4Cl, respectively. l-Asparaginase was free from glutaminase activity, which was crucial medically in terms of their severe side effects. The molecular weight of the purified enzyme is 39.7 KDa by SDS-PAGE analysis and was ideally active at pH 7.5 and 37°C. Notwithstanding, the highest stability of the enzyme was found at pH 8.5 and 70°C for 1 h. The enzyme kinetic parameters displayed Vmax at 41.49 μmol/mL/min and a Km of 3.6 × 10−5 M, which serve as a proof of the affinity to its substrate. The anticancer activity of the enzyme against breast adenocarcinoma cell lines demonstrated significant activity toward MDA-MB-231 cells when compared with MCF-7 cells with IC50 values of 12.6 ± 1.2 μg/mL and 17.3 ± 2.8 μg/mL, respectively.ConclusionThis study provides the first potential of glutaminase-free l-asparaginase production from the marine bacterium Bacillus velezensis as a prospect anticancer pharmaceutical agent for two different breast cancer cell lines.How to cite: Mostafa Y, Alrumman S, Alamri S, et al. Enhanced production of glutaminase-free L-asparaginase by marine Bacillus velezensis and cytotoxic activity against breast cancer cell lines. Electron J Biotechnol 2019;42. https://doi.org/10.1016/j.ejbt.2019.10.001.  相似文献   

18.
Acoustic radiation forces have been used to manipulate cells and bacteria in a number of recent microfluidic applications. The net force on a cell has been subject to careful investigation over a number of decades. We demonstrate that the radiation forces also act to deform cells. An ultrasonic standing wave field is created in a 0.1 mm glass capillary at a frequency of 7.9 MHz. Using osmotically swollen red-blood cells, we show observable deformations up to an aspect ratio of 1.35, comparable to deformations created by optical tweezing. In contrast to optical technologies, ultrasonic devices are potentially capable of deforming thousands of cells simultaneously. We create a finite element model that includes both the acoustic environment of the cell, and a model of the cell membrane subject to forces resulting from the non-linear aspects of the acoustic field. The model is found to give reasonable agreement with the experimental results, and shows that the deformation is the result of variation in an acoustic force that is directed outwards at all points on the cell membrane. We foresee applications in diagnostic devices, and in the possibility of mechanically stimulating cells to promote differentiation and physiological effects.  相似文献   

19.
Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号