首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We investigate students’ negative perceptions about an online peer assessment system for undergraduate writing across the disciplines. Specifically, we consider the nature of students’ resistance to peer assessment; what factors influence that resistance; and how students’ perceptions impact their revision work. We do this work by first examining findings from an end-of-course survey administered to 250 students in ten courses across six universities using an online peer assessment system called SWoRD for their writing assignments. Those findings indicate that students have the most positive perceptions of SWoRD in those courses where an instructor graded their work in addition to peers (as opposed to peer-only grading). We then move to an in-depth examination of perceptions and revision work among 84 students using SWoRD and no instructor grading for assessment of writing in one university class. Findings from that study indicate that students sometimes regard peer assessment as unfair and often believe that peers are unqualified to review and assess students’ work. Furthermore, students’ perceptions about the fairness of peer assessment drop significantly following students’ experience in doing peer assessment. Students’ fairness perceptions—and drops in those perceptions—are most significantly associated with their perceptions about the extent to which peers’ feedback is useful and positive. However, students’ perceptions appear to be unrelated to the extent of their revision work. This research fills a considerable gap in the literature regarding the origin of students’ negative perceptions about peer assessment, as well as how perceptions influence performance.  相似文献   

3.
The impact of No Child Left Behind (NCLB) mandated state science assessment on elementary teachers’ beliefs about teaching science and their classroom practice is relatively unknown. For many years, the teaching of science has been minimized in elementary schools in favor of more emphasis on reading and mathematics. This study examines the dynamics of bringing science to the forefront of assessment in elementary schools and the resulting teacher belief and instructional shifts that take place in response to NCLB. Results indicated that teachers’ beliefs about teaching science remained unchanged despite policy changes mandated in NCLB. Teacher beliefs related to their perceptions of what their administrators and peer groups’ think they should be doing influenced their practice the most. Most teachers reported positive feelings and attitudes about science and reported that their students had positive feelings and attitudes about science; however, teachers reported teaching science less as a result of NCLB. Implications for elementary science education reform and policy are discussed.  相似文献   

4.
This study investigated Turkish preservice, elementary teachers’ personal mathematics teaching efficacy (PMTE), and science teaching efficacy (PSTE) beliefs at the end of their teacher education program. A majority of the participants believed they were well prepared to teach both elementary mathematics and science, but their PSTE scores were significantly lower than their PMTE scores. However, a significant correlation was found between the PMTE and PSTE scores. No significant gender effect on PMTE and PSTE scores was observed, but unlike the results from other countries, Turkish female preservice elementary teachers were found to have slightly higher PMTE and PSTE scores than their male peers. High school major area was found to be a significant predictor of participants’ PMTE and PSTE scores. Participants with mathematics/science high school majors were found to have significantly higher PMTE and PSTE scores than those with other high school majors.  相似文献   

5.
This study compares the effects of two methods of teaching—teacher-centered and cooperative learning—on students’ science achievement and use of social skills. The sample consists of 163 female elementary science students in 8 intact grade 5 classes who were assigned to 2 instructional methods and were taught an identical science unit by 4 classroom teachers. The students’ science achievement was measured by a researcher-designed achievement test given to students as a pretest and a posttest. Students’ social skills were determined by a researcher-designed survey administered as a pretest and posttest. Analysis of the achievement test scores and the social skills survey responses revealed that cooperative learning strategies have significantly (p > 0.05) more positive effects on both students’ achievement and social skills than teacher-centered strategies. These results provide an evidential base to inform policy decisions and encourage and persuade teachers to implement cooperative learning methods in Kuwaiti classrooms.  相似文献   

6.
The purpose of this study is to investigate teacher perspectives on peer relation problems of young children. Examined are teacher definition of and assessment criteria for peer relation problems, and the most poignant peer relation problem perceived by teachers. Three experienced American preschool teachers are interviewed and observed for one year. It is found that the teachers define children’s peer relation problems as part of developmental processes and individual differences. The teachers judge peer relation problems in terms of children’s emotional well-being, intentions, and social skills, and perceive children’s control of others as the most serious peer relation problem in the classroom. It is posited that the teachers’ perspectives rely on the emotional and motivational bases of children’s relationships with peers. The related issues are discussed and implications for teaching practices are provided.  相似文献   

7.
This study explores the impact of ‘Scientific Communication’ (SC) skills instruction on students’ performances in scientific literacy assessment tasks. We present a general model for skills instruction, characterized by explicit and spiral instruction, integration into content learning, practice in several scientific topics, and application of performance tasks. The model was applied through an instructional program that focuses on the following learning skills: information retrieval, scientific reading and writing, listening and observing, data representation, and knowledge presentation. Throughout the 7th–8th grades, 160 students learned the whole program or one of its components: structured instruction (SI) of SC skills, or performance tasks (PT). A comparison group of 42 students did not receive instruction of SC skills. Students’ performances were assessed through a questionnaire and a complex task that measured students’ scientific content knowledge, SC skills, and the quality of the final products. Results indicated that students who learned the whole program or one of its components achieved higher scores in all categories than the comparison group students. High achievers can benefit from just one component of the program: either structured instruction (SI) or learning from practice (PT). However, they can hardly acquire SC skills spontaneously. Low and average achievers require both components of the SC program to improve their performances. Results show that without planned intervention, the spontaneous attainment of SC skills occurs only to a limited extent. Systematic teaching of skills can make a significant difference. The explicit instruction of skills integrated into scientific topics, the opportunities to implement the skills in different contexts, the role of performance tasks as ‘assessment for learning’—all these features are important and necessary for improving students’ scientific literacy. Our general model of skills instruction can be applied to the instruction of other high-order skills. Its application can lead to the realization of the central goal of science education: literate students possessing scientific knowledge.  相似文献   

8.
A new learning unit in chemistry, Case-based Computerized Laboratories (CCL) and Computerized Molecular Modeling (CMM) was developed at the Technion. The CCL and CMM curriculum integrates computerized desktop experiments and molecular modeling with an emphasis on scientific inquiry and case studies. Our research aimed at investigating the effect of the CCL and CMM learning environment on students’ higher-order thinking skills of question posing, inquiry, and modeling. The experimental group included 614 honors 12th grade chemistry students from high schools in Israel who studied according to this learning unit. The comparison group consisted of 155 12th grade chemistry honors students who studied other chemistry programs. Pre- and post-tests questionnaires were used to assess students’ higher-order thinking skills. Students’ responses were analyzed using content analysis rubrics and their statistical analysis. Our findings indicated that the scores of the experimental group students improved significantly in question posing, inquiry and modeling skills from the pre-test to the post-test. The net gain scores of the experimental group students were significantly higher than those of their comparison peers in all three examined skills. In modeling skills, experimental group students significantly improved their achievements in making the transfer from 3D models to structural formulae, but only about half of them were able to transfer from formulae to 3D models. By presenting a case-based chemistry assessment tool and content analysis of students’ responses in this paper, we enable teachers and educators to analyze their students’ higher-order thinking skills both qualitatively and quantitatively.  相似文献   

9.
A research-based framework for teaching science is a heuristic tool used to help preservice teachers conceptualize many complexities of teaching while making explicit the strategy to use a research-based body of professional knowledge to inform instructional decision-making (Clough, 2003, Paper presented at the annual meeting of the Association for the Education of Teachers in Science, St. Louis, MO). Elementary preservice teachers frequently struggle to apply this knowledge to classroom decisions (Madsen, 2002, Paper presented at the annual meeting of the North Central Association for the Education of Teachers of Science, Bettendorf, IA). This study examined the effects of using a video case-analysis within an elementary science methods course focused on the development of a research-based framework. Students in two course sections completed a unit plan, and students in one section completed the video analysis. Video analysis students’ performance on an oral defense with the instructor was compared with oral defense performance from students in the unit plan group. Video analysis students outperformed their peers on questions related to how learning theories influence decisions of selecting content, explaining the use of questioning, and the use of self assessment strategies. Despite these differences, students in both groups still perceive teaching as primarily accomplished through activities and have difficulties understanding the critical role of the teacher in promoting student goals. This study raises issues regarding teachers’ knowledge development during preservice experiences.  相似文献   

10.
Although researchers in higher education propose alternatives to traditional approaches to assessment, traditional methods are commonly used in college or university science courses. The purpose of this study was to explore the feasibility and validity of Prospective Science Teachers’ (PSTs) concept maps as authentic assessment tools in a student-centred approach to describe the changes in the conceptual understanding of the PSTs in general chemistry laboratory investigations. After the PSTs (n = 47) decided on important issues, such as who would assess their concept maps and what scoring strategy and criteria would be used, they practiced assessing their own and peers’ concept maps during the first five laboratory investigations. They subsequently constructed and assessed pre- and post-laboratory concept maps in a student-centred approach consisting of self, peer, and instructor assessments for the five remaining laboratory investigations. The results of the study showed using pre- and post-laboratory concept maps as authentic assessment tools in a student-centred approach was valid and reliable for describing the conceptual understanding of the PSTs in a university general chemistry laboratory course. The results of individual interviews indicated most PSTs had positive views of their assessment practices in the laboratory course. This study also provides pedagogical implications for the training of science teachers.  相似文献   

11.
This study examines the impact of an assessment training module on student assessment skills and task performance in a technology-facilitated peer assessment. Seventy-eight undergraduate students participated in the study. The participants completed an assessment training exercise, prior to engaging in peer-assessment activities. During the training, students reviewed learning concepts, discussed marking criteria, graded example projects and compared their evaluations with the instructor’s evaluation. Data were collected in the form of initial and final versions of students’ projects, students’ scoring of example projects before and after the assessment training, and written feedback that students provided on peer projects. Results of data analysis indicate that the assessment training led to a significant decrease in the discrepancy between student ratings and instructor rating of example projects. In addition, the degree of student vs. instructor discrepancy was highly predictive of the quality of feedback that students provided to their peers and the effectiveness of revisions that they made to their own projects upon receiving peer feedback. Smaller discrepancies in ratings were associated with provision of higher quality peer feedback during peer assessment, as well as better revision of initial projects after peer assessment.  相似文献   

12.
This study implemented an online peer assessment learning module to help 36 college students with the major of pre-school education to develop science activities for future instruction. Each student was asked to submit a science activity project for pre-school children, and then experienced three rounds of peer assessment. The effects of the online peer assessment module on student learning were examined, and the role of Scientific Epistemological Views (SEVs) in the learning process was carefully investigated. This study found that student peers displayed valid scoring that was consistent with an expert’s marks. Through the online peer assessment, the students could enhance the design of science activities for future instruction; for instance, the science activities became more creative, science-embedded, feasible and more suitable for the developmental stage of pre-school children. More importantly, students with more sophisticated (constructivist-oriented) SEVs tended to progress significantly more for designing science activities with more fun, higher creativity and greater relevancy to scientific knowledge, implying that learners with constructivist-oriented SEVs might benefit more from the online peer assessment learning process. These students also tended to offer more feedback to their peers, and much of the peer feedback provided by these students was categorized as guiding or helping peers to carefully appraise and plan their science activity projects. This study finally suggested that an appropriate understanding regarding the constructivist epistemology may be a prerequisite for utilizing peer assessment learning activities in science education.  相似文献   

13.
The objective of this study was to construct a teaching strategy for facilitating students’ conceptual understanding of the boiling concept. The study is based on 52 freshman students in the primary science education department. Students’ ideas were elicited by a test consisting of nine questions. Conceptual change strategy was designed based on students’ alternative conceptions. Conceptual change in students’ understanding of boiling was evaluated by administering a pre-, post- and delayed post-test. The test scores were analysed both by qualitative and quantitative methods. Statistical analysis using one-way ANOVA of student test scores pointed to statistically significant differences in the tests and total scores (p < 0.05). Quantitative analysis of students’ responses on each test revealed different schema about changing their knowledge system. Both qualitative and quantitative analyses suggest that the teaching activities facilitated students’ conceptual understanding. No statistically significant differences were found between post-test and delayed post-test scores, suggesting that the teaching strategy enabled students to retain their new conceptions in the long-term memory.  相似文献   

14.
15.
Conclusion The present study provided insights regarding the interactions that take place in collaborative science laboratory and regarding the outcome of such interactions. Science laboratory experiences structured by teachers have been criticized for allowing very little, if any, meaningful learning. However, this study showed that even structured laboratory experiments can provide insightful experience for students when conducted in a group setting that demanded interactive participation from all its members. The findings of the present study underscored the synergistic and supportive nature of collaborative groups. Here, students patiently repeated explanations to support the meaning construction on the part of their slower peers and elaborated their own understanding in the process; groups negotiated the meaning of observations and the corresponding theoretical explanations; students developed and practiced a range of social skills necessary in today’s workplace; and off-task behavior was thwarted by the group members motivated to work toward understanding rather than simply generating answers for task completion. The current findings suggest an increased use of collaborative learning environments for the teaching of science to elementary education majors. Some teachers have already made use of such settings in their laboratory teaching. However, collaborative learning should not be limited to the laboratory only, but be extended to more traditionally structured classes. The effects of such a switch in activity structures, increased quality of peer interaction, mastery of subject matter content, and decreased anxiety levels could well lead to better attitudes toward science among preservice elementary school teachers and eventually among their own students.  相似文献   

16.
17.
The aim of this study was to compare the achievement of prospective primary science teachers in a problem-based curriculum with those in a conventional primary science teacher preparation program with regard to success in learning about gases and developing positive attitudes towards chemistry. The subjects of the study were 101 first year undergraduate students, who were in two different classes and who were taught by the same lecturer. One of the classes was randomly selected as the intervention group in which problem-based learning (PBL) was used, and the other as the control in which conventional teaching methods were used. The data were obtained through use of the gases diagnostic test (GDT), the chemistry attitude scale (CAS), and scales specific to students’ evaluation of PBL such as the peer evaluation scale (PES), self evaluation scale (SES), tutor’s performance evaluation scale (TPES) and students’ evaluation of PBL scale (SEPBLS). Data were analysed using SPSS 10.0 (Statistical Package for Social Sciences). In order to find out the effect of the intervention (PBL) on students’ learning of gases, independent sample t-tests and ANCOVA (analysis of co-variance) were used. The results obtained from the study showed that there was a statistically significant difference between the experimental and control groups in terms of students’ GDT total mean scores and, their attitude towards chemistry, as well as PBL has a significant effect on the development of students’ skills such as self-directed learning, cooperative learning and critical thinking.  相似文献   

18.
In this study, a Beliefs About Teaching (BAT) scale was created to examine preservice elementary science teachers’ self-reported comfort level with both traditional and reform-based teaching methods, assessment techniques, classroom management techniques, and science content. Participants included 166 preservice teachers from three different US universities. Analyses revealed significant correlations among participants’ confidence level with assessment techniques, classroom management, teaching methods, and science content and number of science methods and science content courses taken. A significant difference was observed among the students enrolled at each university. Overall, study participants felt more comfortable teaching biology concepts than teaching chemistry concepts, physics concepts, or both.  相似文献   

19.
Teachers’ curricular role identities are those dimensions of their professional identities concerned with the use of curriculum materials. In a previous study, we developed and tested a survey instrument designed to measure preservice elementary teachers’ development of curricular role identity for science teaching through their use of science curriculum materials. In this follow-up study, a revised version of the survey was administered to a second group of preservice elementary teachers in the same science methods course, and data were analyzed within and across years. Results from this study suggest that preservice teachers articulated important similarities and differences between the curricular role identities for science teaching they attributed to themselves and to more experienced elementary teachers. Over time, they were often able to begin to appropriate the curricular role identities for science teaching that they attributed to more experienced elementary teachers. However, findings from the second survey administration also suggest that preservice teachers’ curricular role identities for science teaching are more stable when characterized by their actual curriculum design practices than when characterized by comparative, probabilistic means. These findings have important implications for science teacher education and curriculum development, as well as the operationalization of curricular role identity in education research.  相似文献   

20.
In the context of the emphasis on inquiry teaching in science education, this study looks into how pre-service elementary teachers understand and practise science inquiry teaching during field experience. By examining inquiry lesson preparation, practice, and reflections of pre-service elementary teachers, we attempt to understand the difficulties they encounter and what could result from those difficulties in their practice. A total of 16 seniors (fourth-year students) in an elementary teacher education program participated in this study. In our findings, we highlight three difficulties ‘on the lesson’ that are related to teaching practices that were missing in the classrooms: (1) developing children’s own ideas and curiosity, (2) guiding children in designing valid experiments for their hypotheses, (3) scaffolding children’s data interpretation and discussion and another three difficulties ‘under the lesson’ that are related to problems with the pre-service teachers’ conceptualization of the task: (4) tension between guided and open inquiry, (5) incomplete understanding of hypothesis, and (6) lack of confidence in science content knowledge. Based on these findings, we discuss how these difficulties are complexly related in the pre-service teachers’ understandings and action. Several suggestions for science teacher education for inquiry teaching, especially hypothesis-based inquiry teaching, are then explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号