首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper reports an empirical study of science education in Australian primary schools. The data show that, while funding is seen as a major determinant of what is taught and how it is taught, teacher-confidence and teacher-knowledge are also important variables. Teachers are most confident with topics drawn from the biological sciences, particularly things to do with plants. With this exception there is no shared body of science education knowledge that could be used to develop a curriculum for science education. There was evidence that most teachers see a need for a hands-on approach to primary science education involving the use of concrete materials. A substantial proportion of teachers agree that some of the problems would be alleviated by having a set course together with simple, prepared kits containing sample learning experiences. Any such materials must make provision for individual teachers to capitalise on critical teaching incidents as they arise and must not undermine the professional pride that teachers have in their work. Specializations: science education, school effectiveness, teacher education Specializations: science education, teacher education in science  相似文献   

2.
This paper describes how an idea for technology education materials developed into a process for producing unique curriculum modules for teaching technology in a gender-inclusive way to primary children. Using a case-study format, the paper describes the interaction between participants, the sequential evolution of the materials themselves and the degree to which success was achieved in terms of the original goals. The study demonstrates how an awareness of gender bias needs to be a feature from the earliest stages of curriculum development, through to the trialling and modification stages. The curriculum materials were a product of effective cooperation between teachers, science educators and community representatives. They utilise a “process” approach to the teaching of technology and in this presentation, we demonstrate how this same approach is a useful framework for describing this particular curriculum development. Specializations: primary science and technology education, gender issues. Specializations: diagnosis of student learning and teaching for conceptual change, technology education, curriculum evaluation. Specializations: affective aspects of science and technology education, gender issues.  相似文献   

3.
This paper is based on interviews with seventy-five science teachers in twelve schools across Australia. The interviews were conducted as part of a D.E.E.T. Project of National Significance. The purpose of the project was to develop a strategy for the professional development of science teachers. The main purpose of our interviews was to listen to teachers' views on what such a strategy should try to achieve. We asked them to talk about conditions affecting the quality of their work, their attitudes to teaching, their professional development, their careers, the evaluation of teaching, and Award Restructuring. Through these interviews we came to understand how many science teachers are loosely connected with potentially valuable sources of support for their professional development. In this paper we focus on one group of “loose connections”; those between science teachers and scientists in other fields, research in science education, and their colleagues within science departments in schools. Specializations: Science education, reflective practice, teaching and learning. Specializations: Professional development, educational evaluation.  相似文献   

4.
A sample of fourteen secondary school biology teachers chosen from twelve schools were interviewed. The purpose was to determine their views on how controversial issues in science might be handled in the secondary school science classroom and whether the issues of surrogacy and human embryo experimentation were suitable controversial issues for discussion in schools. In general, teachers indicated that controversial issues deserve a more prominent place in the science curriculum because they have the potential to foster thinking, learning, and interest in science. The issues of surrogacy and human embryo experimentation were seen as appropriate contexts for learning, provided that teachers were well informed and sensitive to both the students and to the school environment. Specializations: controversial issues in human reproductive biology, teacher education.  相似文献   

5.
Conclusion The difficulty of sharing meaning of curriculum intentions between different groups is highlighted in this study. The acceptance of the novel features of the Chemistry Study Design is mixed. The longitudinal nature of the study helped to identify the difficulty teachers had in understanding the meaning of these novel features although the experiences of teaching units in the VCE chemistry course have enabled some teachers to shift in their construction of the meaning of the words and messages around them. Specializations: chemistry and science education, technology and industry links with sicence in schools. Specializations: science and technology curriculum, environmental education, educational disadvantage. Specializations: curriculum change, science career paths. Specializations: science education, computers in schools.  相似文献   

6.
Intuition was one of the four key themes for science education that emerged from the Woods Hole Conference in 1957. Despite the considerable influence of this conference on a generation of curriculum projects the intuition theme was almost completely ignored. Recent studies of intuition, including an analysis of Nobel laureates' views of scientific intuition, are considered. This enables several conceptions of the nature and role of intuition in science to be defined, and its importance to be assessed. The assumption that it is also important in science education is examined by considering conditions in science teaching and learning that may encourage intuitive thinking in the light of current research developments that could lead to a new agenda for school science. Specializations: science and technology curriculum, environmental education, educational disadvantage. Specializations: phenomenography, ways of knowing, higher education—teaching and learning.  相似文献   

7.
The study attempts to identify the factors which affect teacher's reluctance to teach science, then explains an approach to help teachers teach science in a worthwhile manner over the school year while monitoring any changes in their confidence and competence. It was found that the condidence and competence of the teachers improved during the year such that they were able to teach successful science lessons on a regular basis. Specializations: primary science and technology education, curriculum development and implementation, teacher education. Specializations: primary science curriculum, early childhood education, gender and science. Specializations: primary science and technology education, issues related to girls in science and technology.  相似文献   

8.
Six beginning primary school teachers pioneering the Interactive Teaching approach to science were studied in their first year of teaching. Interviews with the beginning teachers revcaled that they faced several obstacles to the implementation of the interactive teaching of science. These included lack of collegial support, lack of feedback on their teaching, difficulty assessing the learning of their pupils, and the differences between the culture of learning of the alternative science pedagogy and that of their pupils. By the end of the year, teachers had reconstructed the alternative science pedagogy in ways that reduced these difficulties. The interviews also provided evidence that ongoing support by teachers and teacher-educators versed in the alternative pedagogy can make beginning teacher's implementation of the Interactive Teaching of science less difficult. Specializations: physics education, beginning teachers. Specializations: misconceptions, assessment.  相似文献   

9.
In 1990, a large proportion of third year primary trainee teachers at Victoria College had observed or taught very few or no science lessons during the first two years of their course. The students felt that a lack of content knowledge, a crowded school curriculum, and problems associated with managing resources and equipment, were the main factors contributing to the low level of science being taught in schools. By the end of their third year significantly more students had taught science than after the second year. There was also a change in approach to teaching science with more practical activities being included than previously. The science method unit taught to the students in the third year of their course contributed to this increase. The students considered the hands-on activities in class to have been the most effective aspect of the unit in their preparation for the teaching of primary science. Specializations: children's learning in science, primary teacher education. Specializations: student understanding of biology, evaluation of formal and informal educational settings. Specializations: gender, science and technology, environmental education. Specializations: children's learning in science, language and science.  相似文献   

10.
The use of problem-solving in science instruction implies a change in the teacher's role from dispensing content information to encouraging critical reflective thinking in the student. For problem-solving to become an integral part of the science curriculum, teachers must make it the focus of their instruction. This study investigated the extent to which pre-service primary teachers used the problem-solving approach in their science instruction. It also identified the factors affecting their efforts to teach science using this approach. The issues considered are important in whether problem-solving becomes part of the science curriculum, as teaching behaviour influences student learning outcomes. Specializations: science eeducation Specializations: educational measurement, research methodology.  相似文献   

11.
This paper describes research into teachers' perceptions of technology education carried out as part of the Learning in Technology Education Project. Thirty primary and secondary school teachers were interviewed. Secondary teachers interpreted technology education in terms of their subject subcultures as did some primary teachers. The primary teachers were also influenced by current initiatives, outside school interests and teaching programs. Specializations: investigations in science, science and technology education. Specializations: learning theories, history and philosophy of science, chemical education.  相似文献   

12.
This paper discusses a preliminary investigation into primary pre-service teachers' pedagogical reasoning skills. Results from this investigation led to the development of a problem-based learning model which focused on improving primary pre-service teachers' pedagogical reasoning skills. The problem-based learning model uses pedagogical reasoning as the basis for creating problem situations for the pre-service teachers to investigate. The paper reports on pre-service teachers' views on the use of the approach to improve their pedagogical reasoning skills. Specializations: science teacher education, learning in science, chemistry education. Specializations: student learning, conceptual change, technology education, curriculum evaluation.  相似文献   

13.
Despite the almost mandatory inclusion of a laboratory component in the school curriculum very little has been reported about the effects of laboratory instruction upon student learning and attitudes. The present study was undertaken to investigate the thinking of students in a chemistry laboratory. An interpretive research method was adopted in collecting and analysing data gathered from observations, general interviews and stimulated recall interviews. Four high school students were studied during their participation in a week-long university summer school program. This study reports how the four students responded differently to the same laboratory experience. Specializations: chemistry and biochemistry education, thinking in science and industry. Specializations: science education, teacher learning and preparation, teaching thinking.  相似文献   

14.
The potential of informal sources of science learning to supplement and interact with formal classroom science is receiving increasing recognition and attention in the research literature. In this study, a phenomenographic approach was used to determine changes in levels of understanding of 27 grade 7 primary school children as a result of a visit to an interactive science centre. The results showed that most students did change their levels of understanding of aspects of the concept “sound”. The study also provides information which will be of assistance to teachers on the levels of understanding displayed by students on this concept. Specializations: informal science learning, science curriculum Specializations: science education, science teacher education, conceptual change, learning environments.  相似文献   

15.
Preparing student teachers to teach thoughtfully and to consider carefully the consequences of their work involves creating opportunities for these beginning teachers to learn the skills and attitudes required for reflective practive. The case study described here explores one model of developing reflective practice and the congruent role that the source and use of knowledge of good teaching practice has in the process of developing the reflective practices of a post-graduate pre-service science teacher. Of particular interest are the facilitators and barriers she sees as affecting this development. Specializations: Science education, science teacher education Specializations: science education, science teacher education, conceptual change, learning environments, science reasoning.  相似文献   

16.
This study employs narrative methods to give a holistic view of the experiences of five mature age preservice teachers in a semester unit of science education. The unit was designed to help teachers examine and make explicit their ideas about science and science teaching and consider ways in which they might put those ideas into practice. The pivotal theme, around which the teachers' experiences could be organised, was found to be learning science. The preservice teachers expressed a need for a supportive learning environment in which concepts were built gradually and introduced using concrete examples. Previous science experience was found to be a major influence on the attitudes the participants brought to the present course. A lack of previous experience or negative past experiences were a major cause of anxiety. Gender was also important as it had limited the science experiences available to some participants in the past and continued to influence the way they participated in classes during the semester. Specializations: primary science, science teacher education, primary school field experience. Specializations: formation of teachers' knowledge, leadership, teacher change, school reform.  相似文献   

17.
This paper describes the development and evaluation of a course in physiotherapy whereby the physics fundamental to the modalities of cold, heat and ultrasound therapies was integrated in lectures and actual physiotherapy activities. The design of the course is described together with the perceptions of physiotherapy students regarding the organisation of the course, safety aspects and how well the integration contributed to their understanding of the physics involved in electrotherapy. Specialization: Physics education. Specialization: electrotherapy. Specializations: Diagnosis of student learning difficulties and teaching for conceptual change, technology education, curriculum evaluation. Specializations: Material science, isotope studies, physics education.  相似文献   

18.
A study of primary teacher trainees' perceptions and attitudes to science in 1990, has been useful in designing a semester unit aimed at increasing the confidence and interest of first year students at Victoria College. This paper outlines the background survey and discusses some, of the results and how they were used to develop the Professional Readiness Study-Understanding Science. This unit attempts to change attitudes by focussing on metacognition and encourages students to understand and control their own learning. Discussion involves teaching and learning strategies and alternative assessment approaches including the student's journal-the Personal Record. Specializations: technology for learning, health education. Specializations student understanding of biology, particularly genetics, evaluation. Specializations: children's learning in science, language in science.  相似文献   

19.
This paper describes an ongoing process of participatory curriculum development. It outlines some of the tensions which need to be explored in science curriculum development: debates about the nature of science, of society, of school science content and of learning theories. The process whereby action can arise from this debate is also explored. An example will be outlined of a network of science curriculum action which has developed from the work of a range of science education projects in Natal, South Africa. Specializations: science curriculum development from primary to tertiary level. Specializations: inservice primary science teacher development. Specializations: inservice teacher development, biology education. Specializations: environmental education, teacher development. Specializations: environmental education, teacher development.  相似文献   

20.
It is argued that the introduction of many new curricular with their associated teaching practices have failed because the beliefs, views and attitudes of teachers have been ignored. This paper reports the implications of the initial belicfs of primary school teachers involved in a professional development program about science and technology education. In particular, a mismatch between teachers views of learning and teaching is identified and analysed. Specializations: Science education, professional development Specialisation: primary science and technology education  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号