首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 182 毫秒
1.
我们知道,二项式定理(a+b)n展开式中的通项为Cnran-rbr(r=0,1,…,n),可这样得到,n个乘积括号中有r个取“b”,剩下的n-r个取“a”,得Crnbr·Cnn--rran-r,即Crnan-rbr.根据这一思路,能巧妙解决一类多项式展开题.例1解(a+2b+3c)7的展开式中a2b3c2项的系数是多少?此题可以根据二项式定理,先把其中的两项看成整体,用二项式定理展开再求题目所要求的.这种解法体现了化归的意识.但是,根据二项式定理的形成过程的探讨,可以直接得到下述解法:从7个括号的2个里取“a”,得C27a2,再从剩下的5个括号的3个里取“2b”,得C35(2b)3,最后在剩下的2个括号里…  相似文献   

2.
我们知道,(二十妇.二项展开式的通项公式是C七义一rgr= r名!(”一r)1 rlx,,rg『,改记一种形式为 拐l。一月一义u封UG!01这里。、b为非负整数,且a十b=n.形式推而广之, 件!:a x6:el一‘劣+灯一卜封’展开式的通项公式具有x勺啥。,a、b、。为非负整数,_巨a+b+c=n.证:,.’(二+。十:)一名吼(二+。)‘·『:r一刀 作l(n一r)1 rl(劣+,)“‘r:r…(1)(x+g)’·r展开式的通项可写为二幂{‘!·。‘…(2,其中数,月a+b=n一r.由(1)、(2)即知。、b为非负整(劣+g+:).展开式的通项为 炸l(”一r)lr皿L二仔g乙之r二.劣agb之。(巴记r=c).其中a、b、e为非负整数,…  相似文献   

3.
与多项展开式有关的计数问题,灵活性强,思维方法独特,是各类考试的常见题型,用二项式定理或直接用多项式乘法展开求解,有时比较麻烦,若利用组合知识及分类计数原理与分步计数原理,则容易获得问题的解题思路,且方便、直接、易于掌握.1求项数问题例1(x3+x2+x+1)(y2+y+1)(z+1)展开后不同的项数为.分析由多项式乘法法则,展开式中的项是从每一个括号中任取一项的乘积.由于各括号中字母不同,因而所得乘积项也不同,因而(x3+x2+x+1)(y2+y+1)(z+1)展开式的项有C14·C13·C21=24项.例2(a+b+c+d)10展开式中共有多少项?解析(a+b+c+d)10展开式中的每一…  相似文献   

4.
我们由二项式定理(a+b)n=C0nan+c1nan-1b+…+Crnan-rbr+…+Cnnbn,可以知道(a+b)n展开式中有n+1项.那么,(a+b+c)n展开式中有多少个不同的项呢? 先从简单的情况入手,记(a+b+c)n的展开式的项数为un.显然,n=1时,u1=3=(2·3)/2;n=2时,u2=6=(3·4)/2;  相似文献   

5.
二项式定理: 对于任意两个数a和b以及正整数n,总有(a+b)n=Cn0an+Cn2an-1b+Cn2an-2b2+…+Cnran-rbr+…+Cnnbn,式中Cnm为组合数.公式右边的多项式称为二项展开式,又称牛顿二项展开式.  相似文献   

6.
(a+b)^n=Cn^0a^n+Cn^1a^n-1b^1+…+Cn^1a^n-rb^r+…+Cn^nbn(n∈N^*).这个公式叫做二项式定理,右边的多项式叫做(a+b)^n的二项式展开式,它一共有n+1项,其中Cn^ra^n-rb^r叫做二项式展开式的第r+1项(也称通项),  相似文献   

7.
二项式定理是排列、组合知识应用的重要方面 .又是发现推导新的组合恒等式的重要途径 .二项式定理应用的主要方面有 :求展开式中的某一项或某一项系数的问题 ,求所有项系数的和或者奇数项、偶数项系数和的问题 ,求二项式某一项中字母的值的问题 ,求近似值的问题等等 .下面我们就其基本知识方法和作了一些归纳 ,希望对同学们有所帮助 .基本知识 :(一定 )即二项式定理本身 :( a + b) n =C0nan + C1nan- 1b +… + Crnan- rbr +…+ Cnnbn ( n∈ N * )(二通 )即通项公式 :Tr+ 1=Crnan- rbr( 0≤ r≤ n)(三性 )即二项式系数性质 :( 1)对称性 :…  相似文献   

8.
高考中二项式定理试题几乎年年有 ,主要是利用二项展开式的通项公式求展开式的某一项的系数 ,求展开式的常数项 ;利用二项式系数的性质 ,求某多项式的系数和 ;证明组合数恒等式和整除问题 ,及近似值计算问题 .考查的题型主要是选择题和填空题 ,多是容易题和中等难度的试题 ,但有时综合解答题也涉及到二项式定理的应用 .一、求多项式系数和例 1  ( 1989年全国高考题 )已知 ( 1- 2 x) 7=a0 +a1x +a2 x +… +a7x7,那么 a1+a2 +… +a7=.简析 :欲求 a1+a2 +… +a7的值 ,则需先求出 a0 ,在已知等式中 ,令 x =0 ,则 a0 =1.再令 x =1,则 a0 +a1+a2 …  相似文献   

9.
二项式定理的问题相对独立 ,题型繁多 ,解法灵活且较难掌握 .本文结合近年来的高考试题 ,根据二项式定理的不同问题 ,进行分类 ,并作出解法探讨 .一、确定二项式中的有关元素此类问题一般是根据已知条件 ,列出等式 ,从而可解得所要求的二项式中的有关元素 .【例 1】 已知 ( ax -x2 ) 9的展开式中x3的系数为 94,常数a的值为     .解 :Tr+1 =Cr9( ax) 9-r( -x2 ) r=Cr9( -1 ) r· 2 - r2 ·a9-r·x32 r- 9令32 r-9=3 ,即r=8.依题意 ,得C89( -1 ) 8· 2 - 4·a9- 8=94.解得a=1【例 2】 若在 ( 5x-1x) n 的展开式中 ,第 4项是常数项 ,则…  相似文献   

10.
、、、.产了 曰.工 一C斋a介一rb,C弄一la”一,+工b,一1/汀、、 T定理若a,乙任R十,:任N,、lesse、es.12刀!T了!(n一尹)!一1否一a 刀!(z一1)!(左一T+1)!lesZ飞l、 r、、.声z T兴一‘,mlJ(a+“,”的二项展开式中,第‘项或第n十1项最小,当k任N时,第k项和第k+1项最大,当k磋N时,第〔K〕十1项最大。 证明:设T:十1二C扣”~’乙r,则(a十的”一:·!臼匕瑟少一1]一T(,:之,+守 a一卜b二艺 r二O 几十1C二扩一,b’二艺T:,所以Ta+b 了a(k一7)T:十1一T,二T(T竺丝_ 了,1)(i)当无任N时,l簇介0,所以当,一1,2,…,“一1时,T,十:…  相似文献   

11.
(a+b)n二项展开式有(n+1)项,(a+b+c)n三项展开式的项数可以按二项展开式办法求出:[(a+b)+c]n=C0n(a+b)nc0+C1n(a+b)n-1c1+…+Crn(a+b)n-rcr+…+Cnn(a+b)0cn,其展开式共有(n+1)+n+(n-1)+…+2+1=(n+1)(n+2)/2项.那么(a1+a2+a3+…+am)n展开式又有多少项呢?  相似文献   

12.
设f:M~M.记f,(二)一f(二),fZ(二)~f(f(二)),…,人(二)一f(人、(l’)).若存在最小的整数,:>1,使得人(,)二r,则称f(x)为n阶循环函数. 方程。了+(d一a)二一b一O称为f(二)一a了十b‘一了+d(a,b,:,d任C,t’半O)的特征方程,a,尸为根,△~(d一a)2+4b。为判别式,记k-a—faa一,’月‘则有引理设f(x)~a工+b‘J十d(c半O,ad一be铸0).若△一O,则 (a十d)(x一a)人(二)一a+不决竺匕等一=千学.J·、-·一’2,。c(x一a)+a+d‘若△界O,则 (月k’一a)x一(k,一l)a月j.‘工夕一一.几下石一-万又一一下一万一-…不二下一一 戈尺一1夕了州卜尸一a况得证如存在g(x…  相似文献   

13.
解答与二次展开式的项的系数有关的问题 ,常规的解法是根据 ( a+ b) n 的二项展开式的通项公式 Tr+1 =Crnan- rbr,整理为有关字母的指数形式 ,再令指数为满足条件的次数 ,求出 r的值进行解答 .但其过程较繁 ,且运算量也相对较大 .本文将提供一种较为简单且快捷的“次数分配法”来解答此问题 .因为从 ( a+ b) n 的二项展开式的通项Tr+1 =Crnan- rbr的结构可以看到二项展开式每一项由三部分积构成 :二项式系数 Crn、( a+ b) n中第一项 a的 n- r次幂 an- r和第二项b的 r次幂 br,其中后两个的次数和恰为 n.根据这个特点 ,结合题目中提供的字母…  相似文献   

14.
内容概述二项式定理(a+b) (n∈N)是二项式n次幂的展开式.其通项公式即第r+1项是Tr+1=Crnan-rbr(O≤r≤n),通项公式主要用于解决某个特定项问题.而二项展开式系数Crn有如下一些性质在解题中经常用到. 1.组合恒等式:Cn-mn=Cmn. 2.当n为偶数时,中间项Tn/2+1的二项式系数最大;当n为奇数时,中间二项Tn+1/2+1和Tn+3/2+1的二项式系数相等且最大.在解决展开式中绝对值最大的项等一类问题:常需解不等式|Tr+1|≥|Tr|和|Tr+1|≥  相似文献   

15.
二项式(a+b)“展开式中的通项为Cn^ra^n-rb^r(r=0,1,2,…,n)。它可以这样得到:n个括号(a+b)中的任意r个括号中都取b,剩下的n-r个括号中都取a,相乘得Cn^rb^r&;#183;Cn-6^n-ra^n-r,即为Cn^ra^n-rb^r。根据这一多项式相乘的组合方法,我们容易解决一类三项式展开式中的项与系数问题。下面举例说明。  相似文献   

16.
设多项式f(x)~aoxn+a:xn一’+……+a。一:x+‘,炳=b+(j一l)d,d笋。,j任N。那么n+z阶范得蒙行列式(以下总假定n)2): l bn+1 b盖+-lb3嘴1场嘴lbl日‘ 一一 Db全b呈b牙…b盆+1Dj D一(b厂bi)(b厂bZ)……(b厂b卜i)(bi+1一b:)(b:+:一bj)·,·…(饥+i一bJ) D(j一l)!(n+l一j)!d。 D_,一丁丁甲不“L节厂‘ n IU一从而1嘛嘛︸嵘粼1 11饥嘴 2,盆山bb 1工门‘11bbao .D=八Ua…试一laob全 lb晋一1aob呈 1b犷,aob呈依次给第i(i一1,2,……n)行元素乘以a。卜。,全部加到第n+1行的对应元素上去bn+1b若+:按第n十1行-一一展开一一艺(一1)·‘;+j .f(bj)·…  相似文献   

17.
二项式定理的表达式为(a+b)n=C0nanb0+C1nan-1b1+C2nan-2b2+…+Crnan-rbr+…+Cnna0bn (n∈N?).二项式定理的"娱乐理解": (1)(a+b)n理解为n个人一起玩扑克牌,每个人手中都有两张扑克牌,分别是a和b.规定每个人只出一张牌,且必须出一张牌; (2)通项公式Tr+...  相似文献   

18.
<正>在"人教版"中,二项式定理是高中数学A版必修2-3第一章计数原理第三节的内容,先是用多项式乘法法则结合组合思想,得到(a+b)~2的展开式并进行分析,通过探究(a+b)~3和(a+b)~4的展开式,得到(a+b)~n的展开式,从而得到二项式定理。《普通高中数学课程  相似文献   

19.
<正>通过学习我们知道:1.(a+b)~2=a~2+2ab+b~22.(a+b)~3=a~3+3a~2b+3ab~2+b~33.(a+b)~n=a~n+C_n~1a~(n-1)b+C_n~2a~(n-2)b~2+…C_n~(n-1)ab~(n-1)+b~n这是二项式定理,在学习中我发现,关于(a+b)~n的展开式也可以给出如下证明:(a+b)~n是n个(a+b)相乘,属于多项式乘多项式的问题,每个(a+b)在相乘  相似文献   

20.
1.解法一假设f(x)可分解为两个整系数多项式之积 f(x)=g(x)·h(x),(,)其中g(x)=x户+a,一:x,一‘+…+a,x+a。, h(x)~x.+b,一lxq一’+…+b:x+b0,且a,=l,bq=1,P,宁,a。,a;,…,a,一1,b。,b,,…,bq一:任2. 首先证明P和q均不小于2.若不然,不妨设P~1,有了(x)~(x+a。)h(x).由aob。~3,有a。~士l或士3,即f(x)有根士1或士3.但 f(1)=8, f(一1)=(一1)‘+5(一l)一’+3 ~(一1)一’·4+3转O, f(3)=3一+5·3‘一’+3笋0, f(一3)~(一3)’+5(一3)一’+3 ~(一3)一’·2十3笋0.所以,士1,士3不会是f(x)的根,即P,q均不小于2. 设2簇户镇q(n一2.由aob。一3,不妨设a…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号