首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
This paper studies the issue of finite-time performance guaranteed event-triggered (ET) adaptive neural tracking control for strict-feedback nonlinear systems with unknown control direction. A novel finite-time performance function is first constructed to describe the prescribed tracking performance, and then a new lemma is given to show the differentiability and boundedness of the performance function, which is important for the verification of the closed-loop system stability. Furthermore, with the help of the error transformation technique, the origin constrained tracking error is transformed into an equivalent unconstrained one. By utilizing the first-order sliding mode differentiator, the issue of “explosion of complexity” caused by the backstepping design is adequately addressed. Subsequently, an ingenious adaptive updated law is given to co-design the controller and the ET mechanism by the combination of the Nussbaum-type function, thus effectively handling the influences of the measurement error resulted from the ET mechanism and the challenge of the controller design caused by the unknown control direction. The presented event-triggered control scheme can not only guarantee the prescribed tracking performance, but also alleviate the communication burden simultaneously. Finally, numerical and practical examples are provided to demonstrate the validity of the proposed control strategy.  相似文献   

2.
This article investigates the adaptive neural network fixed-time tracking control issue for a class of strict-feedback nonlinear systems with prescribed performance demands, in which the radial basis function neural networks (RBFNNs) are utilized to approximate the unknown items. First, an modified fractional-order command filtered backstepping (FOCFB) control technique is incorporated to address the issue of the iterative derivation and remove the impact of filtering errors, where a fractional-order filter is adopted to improve the filter performance. Furthermore, an event-driven-based fixed-time adaptive controller is constructed to reduce the communication burden while excluding the Zeno-behavior. Stability results prove that the designed controller not only guarantees all the signals of the closed-loop system (CLS) are practically fixed-time bounded, but also the tracking error can be regulated to the predefined boundary. Finally, the feasibility and superiority of the proposed control algorithm are verified by two simulation examples.  相似文献   

3.
This paper explores the trajectory tracking control problem for a wheeled mobile robot (WMR) in an environment with obstacles and unknown disturbances. A fixed-time extended state observer is presented, which is utilized to estimate unknown disturbances and improve the convergence speed of estimation errors. By introducing the obstacle avoidance cost, a model predictive controller with disturbance compensation is proposed to guarantee desired tracking performance in the presence of obstacles. The proposed method is analyzed for recursive feasibility and closed-loop system stability subject to unknown disturbances and obstacles. Finally, both simulation and experiment are conducted to express the satisfactory tracking effect of the developed approach.  相似文献   

4.
This paper focuses on the problem of direct adaptive neural network (NN) tracking control for a class of uncertain nonlinear multi-input/multi-output (MIMO) systems by employing backstepping technique. Compared with the existing results, the outstanding features of the two proposed control schemes are presented as follows. Firstly, a semi-globally stable adaptive neural control scheme is developed to guarantee that the ultimate tracking errors satisfy the accuracy given a priori, which cannot be carried out by using all existing adaptive NN control schemes. Secondly, we propose a novel adaptive neural control approach such that the closed-loop system is globally stable, and in the meantime the ultimate tracking errors also achieve the tracking accuracy known a priori, which is different from all existing adaptive NN backstepping control methods where the closed-loop systems can just be ensured to be semi-globally stable and the ultimate tracking accuracy cannot be determined a priori by the designers before the controllers are implemented. Thirdly, the main technical novelty is to construct three new nth-order continuously differentiable switching functions such that multiswitching-based adaptive neural backstepping controllers are designed successfully. Fourthly, in contrast to the classic adaptive NN control schemes, this paper adopts Barbalat׳s lemma to analyze the convergence of tracking errors rather than Lyapunov stability theory. Consequently, the accuracy of ultimate tracking errors can be determined and adjusted accurately a priori according to the real-world requirements, and all signals in the closed-loop systems are also ensured to be uniformly ultimately bounded. Finally, a simulation example is provided to illustrate the effectiveness and merits of the two proposed adaptive NN control schemes.  相似文献   

5.
In this paper, a leader-follower formation control scheme of multiple underactuated surface vessels (USVs) is proposed for trajectory tracking, which not only solves the line of sight (LOS) and angle tracking errors within the prescribed performance, but also avoids collisions and maintains the communication connection distance. To achieve the prescribed performance and converge the tracking errors in finite time, a tan-type barrier Lyapunov function (TBLF) is introduced into the designed control strategy. In the process of formation control design, the measured values of the LOS range and angle are available, and the velocity of the leader is estimated using a high-gain observer. Next, a novel self-structuring neural network (SNN) is proposed to estimate the uncertain dynamics induced by the model uncertainties and environmental disturbances, and the computation amount is reduced by optimizing the number of neurons. Combining coordinate transformation and dynamic surface control (DSC), an adaptive NN controller with prescribed performance is proposed. The Lyapunov analysis shows that, although uncertain dynamics exist, the tracking errors can converge to a small region in finite time while achieving the prescribed performance, avoiding collisions, and maintaining the communication distance. In the closed-loop system, all signals are practical finite-time stable (PFS). Finally, the effectiveness of the proposed scheme is illustrated through a numerical simulation.  相似文献   

6.
This paper addresses the adaptive fuzzy event-triggered control (ETC) problem for a class of nonlinear uncertain systems with unknown nonlinear functions. A novel ETC approach that exhibits a combinational triggering (CT) behavior is proposed to update the controller and fuzzy weight vectors, achieving the non-periodic control input signals for nonlinear systems. A CT-based fuzzy adaptive observer is firstly constructed to estimate the unmeasurable states. Based on this, an output feedback ETC is proposed following the backstepping and error transformation methods, which ensures the prescribed dynamic tracking (PDT) performance. The PDT performance indicates that the transient bounds, over-shooting and ultimate values of tracking errors are fully determined by the control parameters and functions chosen by users. The closed-loop stability is guaranteed under the framework of impulsive dynamic system. Besides, the Zeno phenomenon is circumvented. The theoretical analysis indicates that the proposed scheme guarantees control performance while considerably reducing the communication resource utilization and controller updating frequency. Finally, the numerical simulations are conducted to verify the theoretical findings.  相似文献   

7.
The operational space control of a robot manipulator using external sensors requires stabilizing the compound system {external sensors - outer controller - inner controller - robot manipulator}. The user must access the inner controller to reshape it to achieve this stabilization. Due to intellectual property protection purposes, most industrial robots have an unknown or inaccessible inner controller. Therefore, it is tricky to design a stable control scheme. To solve this problem, an adaptive radial basis function neural network (RBF NN) outer controller is proposed, which approximates the inner controller’s dynamics to eliminate its effect in the closed-loop. An inherent property for RBF NN is used to reduce the number of adaptive parameters. Since this technique introduces approximation errors, it is included in the control scheme, a term that constrains the system to converge rapidly to the performances prescribed by the user. It is proved that all the closed-loop signals are semi-globally uniformly ultimately bounded (SGUUB) through Lyapunov theory. The effectiveness of the proposed approach is verified through simulation comparisons and experimental studies.  相似文献   

8.
In this paper, a novel error-driven nonlinear feedback technique is designed for partially constrained errors fuzzy adaptive observer-based dynamic surface control of a class of multiple-input-multiple-output nonlinear systems in the presence of uncertainties and interconnections. There is no requirements that the states are available for the controller design by constructing fuzzy adaptive observer, which can online identify the unmeasurable states using available output information only. By transforming partial tracking errors into new error variables, partially constrained tracking errors can be guaranteed to be confined in pre-specified performance regions. The feature of the error-driven nonlinear feedback technique is that the feedback gain self-adjusts with varying tracking errors, which prevents high-gain chattering with large errors and guarantees disturbance attenuation with small errors. Based on a new non-quadratic Lyapunov function, it is proved that the signals in the resulted closed-loop system are kept bounded. Simulation and comparative results are given to demonstrate the effectiveness of the proposed method.  相似文献   

9.
This paper focuses on the problem of adaptive output feedback control for a class of uncertain nonlinear systems with input delay and disturbances. Radial basis function neural networks (NNs) are employed to approximate the unknown functions and an NN observer is constructed to estimate the unmeasurable system states. Moreover, an auxiliary system is introduced to compensate for the effect of input delay. With the aid of the backstepping technique and Lyapunov stability theorem, an adaptive NN output feedback controller is designed which can guarantee the boundedness of all the signals in the closed-loop systems. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.  相似文献   

10.
Aiming at the consensus tracking control problem of multiple autonomous underwater vehicles (AUVs) with state constraints, a new neural network (NN) and barrier Lyapunov function based finite-time command filtered backstepping control scheme is proposed. The finite-time command filter is utilized to filtering the virtual control signal, the error compensation signal is constructed to eliminate filtering error due to the use of filter, and the NN approximation technology is used to deal with the unknown nonlinear dynamics. The control scheme can guarantee that the consensus tracking errors of position states converge into the desired neighborhood of the origin in finite-time while not exceeding the predefined constraints. Finally, simulation studies prove the feasibility of proposed control algorithm.  相似文献   

11.
Modeling uncertainties including parameter uncertainty and unmodeled dynamics hinder the development of high-performance tracking controller for hydraulic servo system. The observation for the unknown state is another issue worthy of attention. In this paper, a new seamless observer-controller scheme for hydraulic servo system is proposed with partial feedback. The position signal and the pressure signal are firstly used to build an extended structure estimation system for the unknown state. The advantage of this estimation system is that the state observer provides an extended structure for the parameter adaptation compared to other state observers. Thus the parameter uncertainty can be handled. An adaptive robust controller is synthesized in this paper which includes the adaptive part and the robust part. The adaptive part is used to eliminate the parameter uncertainty. Then the residuals coming from the parameter adaption and the errors coming from the state observation are taken into consideration in the robust part. Moreover, the unmodeled dynamics is also handled by the robust part. Theoretical analysis proves that a prescribed transient performance and the final tracking accuracy can be guaranteed by the proposed observer-controller scheme in the presence of both parameter uncertainty and unmodeled dynamics. Furthermore, the convergence of the closed-loop controller-observer system is achieved with the parametric uncertainty existed only. Extensive comparative experiments performed on a hydraulic actuator demonstrate the effectiveness of the proposed observer-controller scheme.  相似文献   

12.
In this paper, the global output feedback tracking control is investigated for a class of switched nonlinear systems with time-varying system fault and deferred prescribed performance. The shifting function is introduced to improve the traditional prescribed performance control technique, remove the constraint condition on the initial value, and make the constraint bounds have more alternative forms. To estimate the unmeasured state variables and compensate the system fault, the switched dynamic gain extended state observer is constructed, which relaxes the traditional Lipschitz conditions on the nonlinear functions. Based on the proposed observer, by constructing the new Lyapunov function and using the backstepping method, the global robust output feedback controller is designed to make the output track the reference signal successfully, and after the adjustment time, the tracking error enters into the prescribed set. The stability of the system is analyzed by the average dwell time method. Finally, simulation results are given to illustrate the effectiveness of the proposed method.  相似文献   

13.
Actuator faults often occur in physical systems, which seriously affect the transient performance and control accuracy of the system. For the finite-time consensus tracking problem of multiple Lagrangian systems with actuator faults and preset error constraints, a novel distributed fault-tolerant controller is proposed in this paper. The proposed controller is developed based on the barrier Lyapunov function method and the adding a power integrator technique, which can not only guarantee the steady-state performance of the system but also its transient performance. Due to its strong sensitivity to the variation of system errors, the proposed controller can quickly eliminate the system initial errors and the error perturbations caused by actuator faults. That is, the controller can guarantee that the consensus error converges to zero in a finite time and is always constrained within the preset error bound. Finally, the effectiveness of the developed controller is verified by simulation of a multi-manipulator system.  相似文献   

14.
This paper presents an extended state observer-based output feedback adaptive controller with a continuous LuGre friction compensation for a hydraulic servo control system. A continuous approximation of the LuGre friction model is employed, which preserves the main physical characteristics of the original model without increasing the complexity of the system stability analysis. By this way, continuous friction compensation is used to eliminate the majority of nonlinear dynamics in hydraulic servo system. Besides, with the development of a new parameter adaption law, the problems of parametric uncertainties are overcome so that more accurate friction compensation is realized. For another, the developed adaption law is driven by tracking errors and observation errors simultaneously. Thus, the burden of extended state observer to solve the remaining uncertainties is alleviated greatly and high gain feedback is avoided, which means better tracking performance and robustness are achieved. The designed controller handles not only matched uncertainties but also unmatched dynamics with requiring little system information, more importantly, it is based on output feedback method, in other words, the synthesized controller only relies on input signal and position output signal of the system, which greatly reduces the effects caused by signal pollution, measurement noise and other unexpected dynamics. Lyapunov-based analysis has proved this strategy presents a prescribed tracking transient performance and final tracking accuracy while obtaining asymptotic tracking performance in the presence of parametric uncertainties only. Finally, comparative experiments are conducted on a hydraulic servo platform to verify the high tracking performance of the proposed control strategy.  相似文献   

15.
In this paper, the adaptive prescribed performance tracking control of nonlinear asymmetric input saturated systems in strict-feedback form is addressed under the consideration of model uncertainties and external disturbances. A radial basis function neural network (RBF-NN) is utilized to handle the model uncertainties. By prescribed performance functions, the transient performance of the system can be guaranteed. The continuous Gaussian error function is represented as an approximation of asymmetric saturation nonlinearity such that the backstepping technique can be leveraged in the control design. Based on the Lyapunov synthesis, residual function approximation inaccuracies and external disturbances are compensated by constructed adaptive control laws. As a consequence, all the signals in the closed-loop system are uniformly ultimately bounded and the tracking errors bounded by prescribed functions converge to a small neighbourhood of zero. The proposed method is applied to the autonomous underwater vehicles (AUVs) with extensive simulation results demonstrating the effectiveness of the proposed method.  相似文献   

16.
This paper studies the sampled outputs-based adaptive fault-tolerant control problem for a class of strict-feedback uncertain nonlinear systems, where the nonlinear functions are allowed to include the unmeasured system states. Within the framework, a sampled output observer is introduced to jointly estimate the system states and parameters. By combining the estimated states and the supervisory switching strategy, an adaptive fault-tolerant controller is designed to achieve the desirable tracking performance. By using Lyapunov stability theory, it is proved that all the signals of the closed-loop systems are bounded and the tracking error converges to an adjustable neighbourhood of the origin eventually both in the fault free and faulty cases. Especially, if the outputs are available all the time, the proposed output feedback fault-tolerant control method can ensure the tracking error satisfy the prescribed performance bounds regardless of the faults. Finally, two examples are used to illustrate the effectiveness of the proposed method.  相似文献   

17.
This work considers a decentralized control problem for non-affine large-scale systems with non-affine functions possibly being discontinuous. A semi-bounded condition for non-affine functions is presented to guarantee the controllability, and the non-affine system is transformed to an equivalent pseudo-affine one based on the mild condition. Different from conventional control schemes on specific actuator nonlinearity, the controller proposed in this paper can deal with a series of actuator nonlinearities such as backlash and deadzone nonlinearity. A time-varying stable manifold involving the tracking error and its high-order derivatives is utilized to handle the high-order dynamics of each subsystem. Besides an improved prescribed performance controller independent of the initial condition is constructed to ensure the finite-time convergence of the error manifold to a predefined region. The boundedness and convergence of the closed-loop system are proved by Lyapunov theory and the counter-evidence method. Two examples are performed to verify the theoretical findings.  相似文献   

18.
In this paper, we consider performance output tracking for coupled wave equations with general external unmatched disturbance. An observer is designed first to estimate the state and disturbance simultaneously. Then we construct a servo system determined completely by the measured output and the reference signal which in turn gives dynamics of reference signal. In the following, an output feedback controller is designed based on this observer and servo system. It is shown that the closed-loop system is well-posed and the performance output is tracking the reference signal. Finally, we present some numerical results to illustrate the effectiveness of the controller.  相似文献   

19.
An adaptive autopilot to control a skid-to-turn missile during its boost phase is designed using the state-dependent Riccati equation (SDRE) method and neural networks (NN). To address the rapid changes in parameters during the boost phase, the translational and rotational motions of the missile are modeled with time-varying velocity and inertial parameters. The autopilot with a two-loop structure is designed to perform integrated roll-pitch-yaw control of the missile with cross-coupled dynamics; each loop has a baseline controller and an adaptive controller. The baseline controller is designed using the SDRE method for reference command tracking in a nominal environment, and the adaptive controller is designed based on NN to manage uncertainty during the boost phase. Stability analysis of the closed-loop system is performed, and the performance of the proposed autopilot is demonstrated by numerical simulation.  相似文献   

20.
The existing studies on prescribed-time control cannot directly deal with nonlinear functions which don’t satisfy Lipschitz growth conditions. No results are available for prescribed-time containment control of pure-feedback UNMASs with prescribed performance. Therefore, completely unknown nonlinear function, prescribed-time tracking of system states and prescribed performance of containment errors are simultaneously considered in this paper. Fuzzy logic systems are utilized to approximate completely unknown nonlinear function. Prescribed-performance function is introduced and further incorporated into a novel speed function. Combining the proposed speed function and barrier Lyapunov function, this article presents a novel adaptive fuzzy prescribed-time containment control method which can guarantee, under prescribed performance, all followers converge to a convex formed by dynamic leaders in a prescribed time. Moreover, all tracking errors converge to predefined regions in a prescribed time. The effectiveness of the proposed prescribed-time containment control method are confirmed by strict proof and simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号