首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 379 毫秒
1.
This paper investigates the problem of sliding mode control (SMC) for discrete-time two-dimensional (2-D) systems subject to external disturbances. Given a 2-D Fornasini–Marchesini (FM) local state space model, attention is focused on designing the 2-D sliding surface and sliding mode controller, which guarantees the resultant closed-loop system to be asymptotically stable. Particularly, this problem is solved using the model transformation based method. First of all, sufficient conditions are formulated for the existence of a linear sliding surface guaranteeing the asymptotic stability of the equivalent sliding mode dynamics. Based on this, a sliding mode controller is synthesized to ensure that the associated 2-D FM system satisfies the reaching condition. The efficiency of the proposed 2-D SMC law design is shown by a numerical example. This paper extends the idea of model transformation to the 2-D systems and solves the SMC problem of a more general 2-D model in FM type for the first time.  相似文献   

2.
This article is dedicated to the issue of asynchronous adaptive observer-based sliding mode control for a class of nonlinear stochastic switching systems with Markovian switching. The system under examination is subject to matched uncertainties, external disturbances, and quantized outputs and is described by a TS fuzzy stochastic switching model with a Markovian process. A quantized sliding mode observer is designed, as are two modes-dependent fuzzy switching surfaces for the error and estimated systems, based on a mode dependent logarithmic quantizer. The Lyapunov approach is employed to establish sufficient conditions for sliding mode dynamics to be robust mean square stable with extended dissipativity. Moreover, with the decoupling matrix procedure, a new linear matrix inequality-based criterion is investigated to synthesize the controller and observer gains. The adaptive control technique is used to synthesize asynchronous sliding mode controllers for error and SMO systems, respectively, so as to ensure that the pre-designed sliding surfaces can be reached, and the closed-loop system can perform robustly despite uncertainties and signal quantization error.Finally, simulation results on a one-link arm robot system are provided to show potential applications as well as validate the effectiveness of the proposed scheme.  相似文献   

3.
This paper focuses on the stabilization problem for a class of Markovian jumping systems (MJSs) subject to intermittent denial-of-service (IDoS) attacks by synthesizing the sliding mode control (SMC) and the transition rate matrix (TRM). The existing conditions for the transition rates are firstly established to ensure the exponential mean-square stability of the unforced uncertain MJSs. And then, a co-design scheme for both the sliding mode controller and TRM is synthesized to achieve the exponential mean-square stability of the closed-loop system under IDoS, in which a switching estimator is utilized to estimate the unmeasurable system state. By introducing a novel Lyapunov function, both the reachability and the stability of sliding mode dynamics are detailedly analyzed, and an iterative optimization algorithm is given for solving the corresponding sufficient conditions. Finally, the proposed co-design SMC strategy is illustrated via the simulation examples.  相似文献   

4.
In this paper, the observer-based sliding mode control (SMC) problem is investigated for a class of uncertain nonlinear neutral delay systems. A new robust stability condition is proposed first for the sliding mode dynamics, then a sliding mode observer is designed, based on which an observer-based controller is synthesized by using the SMC theory combined with the reaching law technique. Then, a sufficient condition of the asymptotic stability is proposed in terms of linear matrix inequality (LMI) for the overall closed-loop system composed of the observer dynamics and the state estimation error dynamics. Furthermore, the reachability problem is also discussed. It is shown that the proposed SMC scheme guarantees the reachability of the sliding surfaces defined in both the state estimate space and the state estimation error space, respectively. Finally, a numerical example is given to illustrate the feasibility of the proposed design scheme.  相似文献   

5.
In this work, we developed a novel active fault-tolerant control (FTC) design scheme for a class of nonlinear dynamic systems subjected simultaneously to modelling imperfections, parametric uncertainties and sensor faults. Modelling imperfections and parametric uncertainties are dealt with using an adaptive radial basis function neural network (RBFNN) that estimates the uncertain part of the system dynamics. For sensor fault estimation (FE), a nonlinear observer based on the estimated dynamics is designed. A scheme to estimate sensor faults in real-time using the nonlinear observer and an additional RBFNN is developed. The convergence properties of the RBFNN, used in the fault FE part, are improved by using a sliding surface function. For FTC design, a sliding surface is designed that incorporates the real-time sensor FE. The resulting sliding mode control (SMC) technique-based FTC law uses the estimated dynamics and real-time sensor FE. A double power-reaching law is adopted to design the switching part of the control law to improve the convergence and mitigate the chattering associated with the SMC. The FTC works well in the presence and absence of sensor faults without the requirement for controller reconfiguration. The stability of the proposed active FTC law is proved using the Lyapunov method. The developed scheme is implemented on a nonlinear simulation of an unmanned aerial vehicle (UAV). The results show good performance of the proposed unified FE and the FTC framework.  相似文献   

6.
This paper is concerned with the robust sliding mode control (SMC) problem for a class of uncertain discrete-time Markovian jump systems with mixed delays. The mixed delays consist of both the discrete time-varying delays and the infinite distributed delays. The purpose of the addressed problem is to design a sliding mode controller such that, in the simultaneous presence of parameter uncertainties, Markovian jumping parameters and mixed time-delays, the state trajectories are driven onto the pre-defined sliding surface and the resulting sliding mode dynamics is stochastically stable in the mean-square sense. A discrete-time sliding surface is firstly constructed and an SMC law is synthesized to ensure the reaching condition. Moreover, by constructing a new Lyapunov–Krasovskii functional and employing the delay-fractioning approach, a sufficient condition is established to guarantee the stochastic stability of the sliding mode dynamics. Such a condition is characterized in terms of a set of matrix inequalities that can be easily solved by using the semi-definite programming method. A simulation example is given to illustrate the effectiveness and feasibility of the proposed design scheme.  相似文献   

7.
In this paper, the adaptive sliding mode control issue for switched nonlinear systems with matched and mismatched uncertainties is addressed, where the persistent dwell-time switching rule is introduced to describe the switching of parameters. Besides, considering the case that the upper bound of the matched uncertainty is unknown, the purpose of this paper is to utilize an adaptive control method to estimate its upper bound parameters. To begin with, a linear sliding surface is constructed, and then the reduced-order sliding mode dynamics can be obtained through a reduced-order method. Next, sufficient conditions can be derived based on the Lyapunov stability and the persistent dwell-time switching analysis techniques ensuring that the reduced-order sliding mode dynamics is globally uniformly exponentially stable. Moreover, a switched adaptive sliding mode control law is designed, which can not only ensure the reachability of the sliding surface but also estimate the upper bound parameters of the matched uncertainty. Finally, a numerical example and a circuit model are introduced to verify the effectiveness of the proposed method.  相似文献   

8.
A sliding mode observer in the presence of sampled output information and its application to robust fault reconstruction is studied. The observer is designed by using the delayed continuous-time representation of the sampled-data system, for which sufficient conditions are given in the form of linear matrix inequalities (LMIs) to guarantee the ultimate boundedness of the error dynamics. Though an ideal sliding motion cannot be achieved in the observer when the outputs are sampled, ultimately bounded solutions can be obtained provided the sampling frequency is fast enough. The bound on the solution is proportional to the sampling interval and the magnitude of the switching gain. The proposed observer design is applied to the problem of fault reconstruction under sampled outputs and system uncertainties. It is shown that actuator or sensor faults can be reconstructed reliably from the output error dynamics. An example of observer design for an inverted pendulum system is used to demonstrate the merit of the proposed methodology compared to existing sliding mode observer design approaches.  相似文献   

9.
In this paper, the tracking control problem of uncertain Euler–Lagrange systems under control input saturation is studied. To handle system uncertainties, a leakage-type (LT) adaptive law is introduced to update the control gains to approach the disturbance variations without knowing the uncertainty upper bound a priori. In addition, an auxiliary dynamics is designed to deal with the saturation nonlinearity by introducing the auxiliary variables in the controller design. Lyapunov analysis verifies that based on the proposed method, the tracking error will be asymptotically bounded by a neighborhood around the origin. To demonstrate the proposed method, simulations are finally carried out on a two-link robot manipulator. Simulation results show that in the presence of actuator saturation, the proposed method induces less chattering signal in the control input compared to conventional sliding mode controllers.  相似文献   

10.
A discrete-time output feedback quasi-sliding mode control scheme is proposed to realize the problem of robust tracking and model following for a class of uncertain linear systems in which states are unavailable and estimated states are not required. The proposed scheme guarantees the stability of the closed-loop system and achieves a very small ultimate boundedness of the tracking error in the presence of matched uncertain parameters and external slow disturbances. This scheme ensures the robustness to matched parametric uncertainties and disturbances. Since the proposed controller is designed without any switching element, the chattering phenomenon is eliminated. Furthermore, the knowledge of upper bound of uncertainties is not required. Simulation results demonstrate the effectiveness of the proposed scheme.  相似文献   

11.
In this paper, an observer-based sliding mode control (SMC) problem is investigated for a class of uncertain delta operator systems with nonlinear exogenous disturbance. A novel robust stability condition is obtained for a sliding mode dynamics by using Lyapunov theory in delta domain. Based on a designed sliding mode observer, a sliding mode controller is synthesized by employing SMC theory combined with reaching law technique. The robust asymptotical stability problem is also discussed for the closed-loop system composed of the observer dynamics and the state estimation error dynamics. Furthermore, the reachability of sliding surfaces is also investigated in state-estimate space and estimation error space, respectively. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the developed method.  相似文献   

12.
13.
In this paper, a sliding mode controller (SMC) is proposed for control of a wheeled inverted pendulum (WIP) system, which consists of a pendulum and two wheels in parallel. The control objective is to use only one actuator to perform setpoint control of the wheels while balance the pendulum around the upright position, which is an unstable equilibrium. When designing the SMC for the WIP system, various uncertainties are taken into consideration, including matched uncertainties such as the joint friction, and unmatched uncertainties such as the ground friction, payload variation, or road slope. The SMC proposed is capable of handling system uncertainties and applicable to general underactuated systems with or without input coupling. For switching surface design, the selection of the switching surface coefficients is in general a sophisticated design issue because those coefficients are nonaffine in the sliding manifold. In this work, the switching surface design is transformed into a linear controller design, which is simple and systematic. By virtue of the systematic design, various linear control techniques, such as linear quadratic regulator (LQR) or linear matrix inequality (LMI), can be incorporated in the switching surface design to achieve optimality or robustness for the sliding manifold. To further improve the WIP responses, the design of reference signals is addressed. The reference position for the pendulum is adjusted according to the actual equilibrium of the pendulum, which depends on the size of the friction and slope angle of the traveling surface. A smooth reference trajectory for the setpoint of the wheel is applied to avoid abrupt jumps in the system responses, meanwhile the reaching time of the switching surface can be reduced. The effectiveness of the SMC is validated using intensive simulations and experiment testings.  相似文献   

14.
This paper is concerned with the adaptive sliding mode control (ASMC) design problem for a flexible air-breathing hypersonic vehicle (FAHV). This problem is challenging because of the inherent couplings between the propulsion system, the airframe dynamics and the presence of strong flexibility effects. Due to the enormous complexity of the vehicle dynamics, only the longitudinal model is adopted for control design in the present paper. A linearized model is established around a trim point for a nonlinear, dynamically coupled simulation model of the FAHV, then a reference model is designed and a tracking error model is proposed with the aim of the ASMC problem. There exist the parameter uncertainties and external disturbance in the model, which are not necessary to satisfy the so-called matched condition. A robust sliding surface is designed, and then an adaptive sliding mode controller is designed based on the tracking error model. The proposed controller can drive the error dynamics onto the predefined sliding surface in a finite time, and guarantees the property of asymptotical stability without the information of upper bound of uncertainties as well as perturbations. Finally, simulations are given to show the effectiveness of the proposed control methods.  相似文献   

15.
This paper studies the problem of observer based fast nonsingular terminal sliding mode control schemes for nonlinear non-affine systems with actuator faults, unknown states, and external disturbances. A hyperbolic tangent function based extended state observer is considered to estimate unknown states, which enhances robustness by estimating external disturbance. Then, Taylor series expansion is employed for the non-affine nonlinear system with actuator faults, which transforms it to an affine form system to simplify disturbance observer and controller design. A finite time disturbance observer is designed to address unknown compound disturbances, which includes external disturbances and system uncertainties. A fast nonsingular terminal sliding mode with exponential function sliding mode is proposed to address output tracking. Simulation results show the proposed scheme is effective.  相似文献   

16.
This paper investigates the fractional-order (FO) adaptive neuro-fuzzy sliding mode control issue for a class of fuzzy singularly perturbed systems subject to the matched uncertainties and external disturbances. Firstly, a novel FO fuzzy sliding mode surface is presented. Secondly, by introducing an appropriate ε-dependent Lyapunov function, some H performance analysis criteria are given, which also ensure the robust stability of the sliding mode dynamics. Furthermore, a hybrid neuro-fuzzy network system (HNFNS) is introduced to estimate the matched uncertainty. Moreover, an FO adaptive fuzzy sliding mode controller is designed to drive the state trajectories of fuzzy singularly perturbed systems to the predefined FO sliding mode surface within a finite-time. Finally, two verification examples are presented to illustrate the validity of the proposed FO control scheme.  相似文献   

17.
High-frequency control switching, chattering, limits the practical application of sliding mode controllers. This paper proposes an enhanced reaching law, viz., Fractional Power Rate Reaching Law (FPRRL), for the design of sliding mode controllers to mitigate the chattering problem. Controller gains are selected to accommodate variations in switching function dynamically to prevent over-actuation near the sliding surface, which is the primary reason for chattering. Chattering mitigation is achieved without compromising other attributes of sliding mode control. Performance enhancements in the attributes, viz., reaching time, robustness, and reduced chattering magnitude have been established through the methodical analysis of the new reaching law. The proposed control strategy is then bench-marked with the state of the art reaching law methods through simulations by considering a twin-rotor MIMO system control problem.  相似文献   

18.
Input shaping provides an effective method for suppressing residual vibration of flexible structure systems. However, it is not very robust to parameter uncertainties and external disturbances. In this paper, a closed-loop input shaping method is developed for suppressing residual vibration of multi-mode flexible structure systems with parameter uncertainties and external disturbances. The proposed scheme integrates both input shaping control and discrete-time neuro-sliding mode output feedback control (NSMOFC). The input shaper is designed for the reference model and implemented outside of the feedback loop to achieve the exact elimination of residual vibration. In the feedback loop, the discrete-time NSMOFC technique is employed to make the closed-loop system behave like the reference model with input shaper, where the residual vibration is suppressed. The selection of switching surface and the existence of sliding mode have been addressed. The knowledge of upper bound of uncertainties is not required. Furthermore, it is shown that increasing the robustness to parameter uncertainties does not lengthen the duration of the impulse sequence. Simulation results demonstrate the efficacy of the proposed closed-loop input shaping control scheme.  相似文献   

19.
Mismatched uncertainty and chattering appear as two challenges in sliding mode control. To overcome the problem of mismatched uncertainty, multiple sliding surfaces with virtual inputs are proposed. Accordingly, we have proposed two new methods based on designed neural observer: sliding mode control (SMC) and dynamic sliding mode control (DSMC) methods. Although, the proposed SMC can significantly cope with the mismatched uncertainties, but it suffers from chattering phenomenon. The chattering problem can be removed in DSMC, because an integrator is placed before the system. This results in increased number of the system states. This new state can be identified with the proposed neural observer. Note that in both proposed approaches, the robust performance (invariance property) of system is reserved, even in the presence of mismatch uncertainties. Then, to have a valid comparison the proposed DSMC is also designed using loop transfer recovery observer (LTRO). This comparison shows the good performance of the DSMC based neural networks. Moreover, the upper bound of uncertainties is not used in SMC and DSMC controllers and also in the neural observer and LTRO, which is important in practical implementation. Finally, comparing the equations, one can see the simplicity of DSMC in concept and also in realization.  相似文献   

20.
This paper considers the sliding mode control (SMC) problem of a class of uncertain Markovian jump systems, in which there exist randomly occurring parameter uncertainties and random gain variations in the controller. By introducing two independent random variables obeying Bernoulli distribution, the random characteristics of parameter uncertainties and controller gain variations are described. A mode-dependent sliding surface is constructed, and then, the non-fragile SMC scheme is synthesized such that the specified sliding surface is reached in finite time. Furthermore, the stochastic finite-time boundedness over both the reaching and sliding stages are ensured simultaneously under some sufficient conditions. Finally, the developed non-fragile SMC approach is verified by a practical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号