首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The problem of observer-based finite-time H control for discrete-time Markov jump systems with time-varying transition probabilities and uncertainties is studied in this paper, in which time-varying transition probabilities are modelled as convex polyhedron, and the parameter uncertainty satisfies norm-bounded. First of all, a Luenberger observer is designed to measure the system state. Then, observer-based controller is constructed to ensure the stochastic finite-time boundedness of the resulting closed-loop system with an H performance. Furthermore, sufficient conditions are derived in light of linear matrix inequalities. In the end, the flexibility and applicability of the developed methods are demonstrated by two illustrative examples.  相似文献   

2.
A method is presented for constructing a nonreduced observer for a finite dimensional linear system. The systems considered are nth order, time-invariant or time-varying forced linear systems which are assumed to be bounded and uniformly completely state reconstructible. The observer dynamics are derived from an optimal estimation formulation which is related to the concept of observability. The cost functional used in this formulation includes a parameter which determines the relative weighting of the system output and the estimate of the initial system state. The result is a practical method of estimating the state of a linear system from noiseless measurements of the input and output. The results are also of theoretical significance in that a direct connection between reconstructibility and the existence of observers is established.  相似文献   

3.
A linear matrix inequality based mixed H2-dissipative type state observer design approach is presented for smooth discrete time nonlinear systems with finite energy disturbances. This observer is designed to maintain H2 type estimation error performance together with either H or a passivity type disturbance reduction performance in case of randomly varying perturbations in its gain. A linear matrix inequality is used at each time instant to find the time-varying gain of the observer. Simulation studies are included to explore the performance in comparison to the extended Kalman filter and a previously proposed constant gain observer counterpart.  相似文献   

4.
An unknown input observer is to estimate the system state of a dynamic system subject to unknown input excitations. In this note, by assuming that at each time instant, the unknown input can be approximated by a polynomial over a local time interval, a finite-time observer is proposed to achieve approximate joint state and input estimation. Both the obtained state and input estimates are moving averages of the present and past output signals. The advantage of the proposed design is that it can be applied to non-minimum phase systems or systems with non-unity relative degree. Notice that most previous unknown input observer designs require the system to be minimum-phase and relative degree one.  相似文献   

5.
In this paper, the composite anti-disturbance resilient control is considered for nonlinear singular stochastic hybrid system with partly unknown Markovian jump parameters under multiple disturbances. Three kinds of disturbances are included in the studied system. One is generated by an external system and it enters the hybrid system from the channel of the control input. The other one is stochastic white noise. And the third one is the external unknown time-varying disturbance and it is supposed to be H2 norm bounded. By combining the disturbance-observer-based-control scheme, H control technique and resilient control method, a composite anti-disturbance resilient controller is constructed to attenuate and eliminate the affection of these disturbances, and ensures the whole closed-loop system regular, impulse free and stochastically stable with the corresponding control performance. Then, some sufficient conditions and the gains of the controller and observer are obtained by using Lyapunov function method and the linear matrix inequalities (LMIs) technique. Finally, two numerical examples are given to show the effectiveness of presented method.  相似文献   

6.
This paper addresses the control problem for a class of discrete-time Markov jump linear systems with partially unknown transition probabilities using model predictive controller subject to external disturbances and input constraints. Our focus is on the design of a model predictive controller to stabilize the system with a given mixed H2/H performance index. Sufficient conditions are derived in terms of a set of linear matrix inequalities. Examples are presented to demonstrate the effectiveness of the proposed controller design method.  相似文献   

7.
This paper is concerned with the reliable event-triggered H output control of nonlinear systems with actuator faults. A dynamic triggering scheme depending on system outputs is implemented to reduce the amount of communication transmissions, which is different from existing constant triggering thresholds. The parameters of actuator faults are estimated via observer state. To compensate for the fault effects on systems, the reliable controller parameters are adjusted along with the obtained estimations. By using some technical lemmas, new sufficient conditions for the closed-loop system to be asymptotically stable with prescribed H performance are formed in linear matrix inequalities. Lastly, simulations are implemented to demonstrate the validity of the proposed method.  相似文献   

8.
9.
This paper is concerned with the event-based weighted residual generator design via non-parallel distribution compensation (PDC) scheme for fault diagnosis in discrete-time T–S fuzzy systems, under consideration of the imperfect premise matching membership functions. An event-triggered mechanism is firstly introduced to save communication resources, which leads to the premise variables of the system and observer to be asynchronous. Then, a fuzzy diagnostic observer with mismatched premise variables is designed to estimate the unmeasurable states of the system. Moreover, by using non-PDC method, a diagnostic observer-based weighted residual generator is established to improve the fault detection (FD) performance by using the information provided by each local system, in which the membership functions structure of the diagnostic observer and residual generator need not to be the same as the systems, and the L/L2 and L FD scheme is used to optimize the FD performance. Finally, two simulation results are provided to show the efficiency of the proposed non-PDC method.  相似文献   

10.
A full order fractional-order observer is designed for a class of Lipschitz continuous-time nonlinear fractional-order systems with unknown input. Sufficient conditions of existence for the designed observer and stability of state estimation error system are developed by reconstructing state and using general quadratic Lyapunov function. By applying fractional-order extension of Lyapunov direct method, the stability of the fractional-order state estimation error system is analyzed. Due to the conditions involving a nonlinear matrix inequality, a new sufficient condition with linear matrix inequality (LMI) is reformulated, which makes the full order fractional-order observer implemented easily by using Matlab LMI toolbox. Examples are taken to show the effectiveness of the proposed approach by numerical simulations.  相似文献   

11.
This paper addresses the state observation and unknown input estimation of a class of switched linear systems with unknown inputs. This class of systems may have modes in which the state is not fully observable. A state transformation allows implementing two suitable reduced-order observers. The first one, based on second order sliding mode techniques, is proposed to reconstruct the discrete state in the presence of unknown inputs. The second one, based on gathering partial information from individual modes of the switched system and on higher order sliding mode techniques, is introduced to estimate the continuous state. Then, the observer injection signal of the first second order sliding mode observer is used to estimate the unknown inputs. Simulation results highlight the efficiency of the proposed method.  相似文献   

12.
This paper deals with the state estimation of nonlinear discrete systems described by a multiple model with unknown inputs. The main goal concerns the simultaneous estimation of the system's state and the unknown inputs. This goal is achieved through the design of a multiple observer based on the elimination of the unknown inputs. It is shown that the observer gains are solutions of a set of linear matrix inequalities. After that, an unknown input estimation method is proposed. An academic example and an application dealing with message decoding illustrate the effectiveness of the proposed multiple observer.  相似文献   

13.
In this paper, the problem of output feedback robust H control for spacecraft rendezvous system with parameter uncertainties, disturbances and input saturation is investigated. Firstly, a full-order state observer is designed to reconstruct the full state information, whose gain matrix can be obtained by solving the linear matrix inequality (LMI). Subsequently, by combining the parametric Riccati equation approach and gain scheduled technique, an observer-based robust output feedback gain scheduled control scheme is proposed, which can make full use of the limited control capacity and improve the control performance by scheduling the control gain parameter increasingly. Rigorous stability analyses are shown that the designed discrete gain scheduled controller has faster convergence performance and better robustness than static gain controller. Finally, the performance and advantage of the proposed gain scheduled control scheme are demonstrated by numerical simulation.  相似文献   

14.
Robust fault detection for a class of nonlinear time-delay systems   总被引:1,自引:0,他引:1  
In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. Firstly, a reference residual model is introduced to formulate the robust fault detection filter design problem as an H model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying robust H optimization control technique, the existence conditions of the robust fault detection filter for nonlinear time-delay systems with unknown inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design example is used to demonstrate the validity and applicability of the proposed approach.  相似文献   

15.
This paper deals with the problems of non-fragile robust stochastic stabilization and robust H control for uncertain stochastic nonlinear time-delay systems. The parameter uncertainties are assumed to be time-varying norm-bounded appearing in both state and input matrices. The time-delay is unknown and time-varying with known bounds. The non-fragile robust stochastic stabilization problem is to design a memoryless non-fragile state feedback controller such that the closed-loop system is robustly stochastically stable for all admissible parameter uncertainties. The purpose of robust H control problem, in addition to robust stochastical stability requirement, is to reduce the effect of the disturbance input on the controlled output to a prescribed level. Using the Lyapunov functional method and free-weighting matrices, delay-dependent sufficient conditions for the solvability of these problems are established in terms of linear matrix inequality (LMI). Numerical example is provided to show the effectiveness of the proposed theoretical results.  相似文献   

16.
《Journal of The Franklin Institute》2019,356(17):10296-10314
This paper investigates the problem of distributed event-triggered sliding mode control (SMC) for switched systems with limited communication capacity. Moreover, the system output and switching signals are both considered to be sampled by distributed digital sensors, which may cause control delay and asynchronous switching. First of all, a novel distributed event-triggering scheme for switched systems is proposed to reduce bandwidth requirements. Then, a state observer is designed to estimate the system state via sampled system output with transmission delay. Based on the observed system state, a switched SMC law and corresponding switching law are designed to guarantee the exponential stability of the closed-loop system with H performance. Finally, an application example is given to illustrate the effectiveness of the proposed method.  相似文献   

17.
This paper concentrates on proposing a novel finite-time tracking control algorithm for a kind of nonlinear systems with input quantization and unknown control directions. The nonlinear functions in the system are approximated by the means of strong approximation capability of the fuzzy logic systems. Firstly, the nonlinear system with unknown control directions is transformed into an equivalent system with known control gains by coordinate transformation. Secondly, the unknown system states are estimated by a designed fuzzy state observer, and the disturbance observer is constructed to track the external disturbances. The command filtering method is proposed to approach the problem of “explosion of complexity” existed in the conventional backstepping design process. In this system, the difficulties caused by unknown control directions are solved via the Nussbaum gain approach. Finally, based on the fuzzy state observer, the controller of the original system is obtained via using the transformed system by the backstepping method. The boundedness of all signals and the convergence of tracking and observer errors at the origin are ensured for the closed-loop system, and demonstrated by the simulation result in this paper.  相似文献   

18.
The problem of constructing functional observers for linear systems with unknown inputs is considered. Necessary and sufficient conditions for the existence of a proper observer (without differentiations) are revisited. A simple and explicit form of a functional observer is presented. It is shown that when such observer is not proper, it is still possible to use the High-Order Sliding Mode differentiator to implement it. Nevertheless, in such case, additional conditions on the system and the unknown input are required.  相似文献   

19.
This paper is concerned with integrated event-triggered fault estimation (FE) and sliding mode fault-tolerant control (FTC) for a class of discrete-time Lipschtiz nonlinear networked control systems (NCSs) subject to actuator fault and disturbance. First, an event-triggered fault/state observer is designed to estimate the system state and actuator fault simultaneously. And then, a discrete-time sliding surface is constructed in state-estimation space. By the use of a reformulated Lipschitz property and delay system analysis method, the sliding mode dynamics and state/fault error dynamics are converted into a unified linear parameter varying (LPV) networked system model by taking into account the event-triggered scheme, actuator fault, external disturbance and network-induced delay. Based on this model and with the aid of Lyapunov–Krasovskii functional method, a delay-dependent sufficient condition is derived to guarantee the stability of the resulting closed-loop system with prescribed H performance. Furthermore, an observed-based sliding mode FTC law is synthesized to make sure the reachability of the sliding surface. Finally, simulation results are conducted to verify the effectiveness of the proposed method.  相似文献   

20.
We consider the stability and L2-gain analysis problem for a class of switched linear systems. We study the effects of the presences of input delay and switched delay in the feedback channels of the switched linear systems with an external disturbance. By contrast with the most of the contributions available in literatures, we do not require that all the modes of the switched system are stable when input delay appears in the feedback input. By reaching a compromise among the matched-stable period, the matched-unstable period, and the unmatched period and permitting the increasing of the multiple Lyapunov functionals on all the switching times, the solvable conditions of exponential stability and weighted L2-gain are developed for the switched system under mode-dependent average dwell time scheme (MDADT). Finally, numerical examples are given to illustrate the effectiveness of the proposed theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号