首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the adaptive sliding mode control (ASMC) design problem for a flexible air-breathing hypersonic vehicle (FAHV). This problem is challenging because of the inherent couplings between the propulsion system, the airframe dynamics and the presence of strong flexibility effects. Due to the enormous complexity of the vehicle dynamics, only the longitudinal model is adopted for control design in the present paper. A linearized model is established around a trim point for a nonlinear, dynamically coupled simulation model of the FAHV, then a reference model is designed and a tracking error model is proposed with the aim of the ASMC problem. There exist the parameter uncertainties and external disturbance in the model, which are not necessary to satisfy the so-called matched condition. A robust sliding surface is designed, and then an adaptive sliding mode controller is designed based on the tracking error model. The proposed controller can drive the error dynamics onto the predefined sliding surface in a finite time, and guarantees the property of asymptotical stability without the information of upper bound of uncertainties as well as perturbations. Finally, simulations are given to show the effectiveness of the proposed control methods.  相似文献   

2.
This paper investigates the finite-time cooperative formation control problem for a heterogeneous system consisting of an unmanned ground vehicle (UGV) - the leader and an unmanned aerial vehicle (UAV) - the follower. The UAV system under consideration is subject to modeling uncertainties, external disturbance as well as actuator faults simultaneously, which is associated with aerodynamic and gyroscopic effects, payload mass, and other external forces. First, a backstepping controller is developed to stabilize the leader system to track the desired trajectory. Second, a robust nonsingular fast terminal sliding mode surface is designed for UAV and finite-time position control is achieved using terminal sliding mode technique, which ensures the formation error converges to zero in finite time in the presence of actuator faults and other uncertainties. Furthermore, by combining the radial basis function neural networks (NNs) with adaptive virtual parameter technology, a novel NN-based adaptive nonsingular fast terminal sliding formation controller (NN-ANFTSMFC) is developed. By means of the proposed adaptive control strategy, both uncertainties and actuator faults can be compensated without the prior knowledges of the uncertainty bounds and fault information. By using the proposed control schemes, larger actuator faults can be tolerated while eliminating control chattering. In order to realize fast coordinated formation, the expected position trajectory of UAV is composed of the leader position information and the desired relative distance with UGV, based on local distributed theory, in the three-dimensional space. The tracking and formation controllers are proved to be stable by the Lyapunov theory and the simulation results demonstrate the effectiveness of proposed algorithms.  相似文献   

3.
This paper proposes a novel fast terminal sliding mode (FTSM) control scheme, which accelerates convergence of the controlled system both in its approaching and after reaching the sliding manifold. The novelty lies in the design of time-varying sliding surface without a priori knowledge of the initial system states, so achieving insensitivity to the uncertainty of the initial states. Based on this, we design a corresponding FTSM control strategy, where the singularity problem of conventional terminal sliding mode (TSM) control systems is overcome by restricting the TSM surfaces to non-singular areas. We prove stability and finite-time convergence of the system with the proposed controller. Furthermore, we extend the proposed FTSM control scheme to high-order systems and discuss its application in practical systems. Preliminary simulation results and comparative studies demonstrate the validity of the proposed FTSM control scheme with the designed sliding surface.  相似文献   

4.
This paper deals with the sliding mode control problem for semi-Markovian jump systems with state saturation, in which the controller may not be synchronized with the considered systems. A mode-detector is introduced to estimate the unavailable system mode, based on which an asynchronous sliding mode controller is designed. Then, both the μ-exponential mean-square stability and the reachability of sliding surface are analyzed. Furthermore, a solving algorithm is given to acquire the feasible controller gains. Finally, the proposed asynchronous sliding mode control approach under state-saturation is illustrated via simulation results.  相似文献   

5.
This paper studies the problem of observer based fast nonsingular terminal sliding mode control schemes for nonlinear non-affine systems with actuator faults, unknown states, and external disturbances. A hyperbolic tangent function based extended state observer is considered to estimate unknown states, which enhances robustness by estimating external disturbance. Then, Taylor series expansion is employed for the non-affine nonlinear system with actuator faults, which transforms it to an affine form system to simplify disturbance observer and controller design. A finite time disturbance observer is designed to address unknown compound disturbances, which includes external disturbances and system uncertainties. A fast nonsingular terminal sliding mode with exponential function sliding mode is proposed to address output tracking. Simulation results show the proposed scheme is effective.  相似文献   

6.
Lack of actuators creates many challenges in controlling underactuated systems. Additional difficulty arises when underactuated systems are subject to actuator faults, parametric uncertainties, and disturbances. We develop an adaptive robust controller for such systems by combining various advanced techniques with many benefits. The core of the controller, which is based on nonsingular integral fast-terminal sliding mode, ensures high robustness and quick finite-time convergence, reduces chattering, and prevents singularity. Fault-tolerant control provides good fault compensation. Fractional derivatives make the control structure flexible because fractional orders are adjustable gains. Self-tuning control creates an adaption mechanism that endows the system an intelligent behavior. Two layers of the sliding mode that contain fractional derivative, terminal power, and definite integral ensure terminal Mittag–Leffer stability. We test the proposed approach on an underactuated floating crane through a simulation and an experiment. A comparison with other methods shows the superiority of our approach.  相似文献   

7.
In this paper, the observer-based sliding mode control (SMC) problem is investigated for a class of uncertain nonlinear neutral delay systems. A new robust stability condition is proposed first for the sliding mode dynamics, then a sliding mode observer is designed, based on which an observer-based controller is synthesized by using the SMC theory combined with the reaching law technique. Then, a sufficient condition of the asymptotic stability is proposed in terms of linear matrix inequality (LMI) for the overall closed-loop system composed of the observer dynamics and the state estimation error dynamics. Furthermore, the reachability problem is also discussed. It is shown that the proposed SMC scheme guarantees the reachability of the sliding surfaces defined in both the state estimate space and the state estimation error space, respectively. Finally, a numerical example is given to illustrate the feasibility of the proposed design scheme.  相似文献   

8.
This paper investigates the problem of sliding mode control (SMC) for discrete-time two-dimensional (2-D) systems subject to external disturbances. Given a 2-D Fornasini–Marchesini (FM) local state space model, attention is focused on designing the 2-D sliding surface and sliding mode controller, which guarantees the resultant closed-loop system to be asymptotically stable. Particularly, this problem is solved using the model transformation based method. First of all, sufficient conditions are formulated for the existence of a linear sliding surface guaranteeing the asymptotic stability of the equivalent sliding mode dynamics. Based on this, a sliding mode controller is synthesized to ensure that the associated 2-D FM system satisfies the reaching condition. The efficiency of the proposed 2-D SMC law design is shown by a numerical example. This paper extends the idea of model transformation to the 2-D systems and solves the SMC problem of a more general 2-D model in FM type for the first time.  相似文献   

9.
In this paper, the consensus control problem of Takagi-Sugeno (T-S) fuzzy multiagent systems (MASs) is investigated by using an observer based distributed adaptive sliding mode control. A distributed nonfragile observer is put forward to estimate the unmeasured state of agents. Based on such an observer, a novel distributed integral sliding surface is designed to suppress the disturbance and uncertainty of T-S fuzzy MASs. In order to achieve the consensus objective, a nominal distributed protocol and an adaptive sliding mode controller are separately designed. Futhermore, the nominal distributed protocol solves the consensus control problem of T-S fuzzy MASs in the absence of disturbance and uncertainty by using the information of adjacent agents obtained by the observer, while the adaptive sliding mode controller suppresses the disturbance and uncertainty. Finally, the proposed method is applied to two examples. Example 1 verifies the superiority of the method by comparing with the fuzzy-based dynamic sliding mode controller. Example 2 is used to illustrate that our control scheme can effectively solve the consensus control problem of T-S fuzzy MASs.  相似文献   

10.
This paper proposes a data-driven terminal sliding mode decoupling controller with prescribed performance for a class of discrete-time multi-input multi-output systems in the presence of external disturbances and uncertainties. First, utilizing a discrete-time extended state observer and a compact form dynamic linearization data model, we derive a new data-driven mothod and establish the relationship between the input and output signals of controlled plant. Moreover, the disturbances, uncertainties, and couplings are suppressed owing to the application of the terminal sliding mode technique. Combined with the principle of prescribed performance control, the terminal sliding mode law with prescribed performance is derived. With the proposed data-driven method, the tracking error is lower, and the decoupling ability is improved. Furthermore, the stability of the control system is proven. Finally, a simulation is conducted on a three-tank system to demonstrate the effectiveness of the proposed scheme.  相似文献   

11.
This paper focuses on the problem of chaos control for the permanent magnet synchronous motor with chaotic oscillation, unknown dynamics and time-varying delay by using adaptive sliding mode control based on dynamic surface control. To reveal the mechanism of motor system and facilitate controller design, the dynamic behavior of the system is investigated. Nonlinear items of system model, upper bounds of time delays and their derivatives are taken as unknown in the overall process. A RBF neural network with an adaptive law, which eliminates restrictions on accurate model and parameters, is employed to cope with unknown dynamics. In order to solve issues such as chaotic oscillation, ‘explosion of complexity’ of backstepping, and chattering associated with sliding mode control, a sliding mode controller is developed within the framework of dynamic surface control by the hybrid of adaptive technology and RBF neural network. In addition, an appropriate Lyapunov function is employed to demonstrate the system stability. Finally, the feasibility of the proposed scheme is testified by simulation.  相似文献   

12.
In order to improve the anti-disturbance performance of a bearingless induction motor (BIM) control system, a fractional-order sliding mode control (FOSMC) strategy based on improved load torque observer is proposed on the basis of the sliding mode speed regulation system. Using the information memory and genetic characteristics of the fractional calculus operator, the fractional integral term of the speed error is introduced in the design of the traditional sliding surface, which reduces the influence of disturbance on the speed regulation system. The fractional-order sliding mode control law is derived based on the BIM mathematical model, and the stability of the control law is proved by Lyapunov theorem. An improved observer is constructed based on the BIM state equations, and the real-time observed load torque is introduced into the fractional-order sliding mode controller. To improve the observer's convergence speed, the proportional integral form is used to replace the integral form in the traditional reduced order load observer. And the state error feedback coefficients of the improved load observer are calculated. Both simulation and experimental results verified the effectiveness of the proposed control strategy.  相似文献   

13.
This paper investigates a quaternion-based finite-time cooperative attitude synchronization and tracking of multiple rigid spacecraft with a virtual leader subject to bounded external disturbances. Firstly, the communication network between followers is assumed to be an undirected graph and every follower can get a direct access to the virtual leader, by using two neighborhood attitude error signals, a novel chattering-free recursive full-order sliding mode control algorithm is proposed such that all follower spacecraft synchronize to the virtual leader in finite time. In the proposed algorithm, the sliding mode surface is constructed by two layers of sliding mode surfaces, which are called as the outer and the inner sliding mode surfaces. To achieve finite-time performance of sliding mode dynamics, the outer sliding mode surface is designed as a terminal sliding mode manifold, and the inner one is designed as a fast nonsingular terminal sliding mode manifold, respectively. Then, to reduce the heavy communication burden, a distributed recursive full-order sliding mode control law is designed by introducing a distributed finite-time sliding mode estimator such that only a subset of the group members has access to the virtual leader. Finally, a numerical example is illustrated to demonstrate the validity of the proposed results.  相似文献   

14.
In this work, finite time position and heading control based on backstepping based fast terminal sliding mode control is proposed for coaxial octorotor subjected to external wind disturbances. First, mathematical model of the coaxial octorotor is developed and then a new learning-based technique, an extended inverse multi-quadratic radial basis function network (EIMRBFN) is proposed to estimate the unmodeled dynamics of the octorotor. The external disturbance observer is also designed to encompass the realistic disturbance effect in the dynamical model and to allow the controller handle external disturbances, effectively. Backstepping controller based on fast terminal sliding model control is then proposed and also applied on the resultant dynamical model that provides finite time convergence of system's states. The stability of the proposed controller and complete system is analyzed using Lyapunov stability theory. Finite time convergence analysis of the desired trajectory is also provided. Simulations are carried out to validate the effectiveness of the proposed control scheme. Comparison with traditional PID and LQR controllers also verifies that the proposed controller achieves improved performance.  相似文献   

15.
This paper focuses on the fixed-time leader-following consensus problem for multiple Euler–Lagrange (EL) systems via non-singular terminal sliding mode control under a directed graph. Firstly, for each EL system, a local fixed-time disturbance observer is introduced to estimate the compound disturbance (including uncertain parameters and external disturbances) within a fixed time under the assumption that the disturbance is bounded. Next, a distributed fixed-time observer is designed to estimate the leader’s position and velocity, and the consensus problem is transformed into a local tracking problem by introducing such an observer. On the basis of the two types of observers designed, a novel non-singular terminal sliding surface is proposed to guarantee that the tracking errors on the sliding surface converge to zero within a fixed time. Furthermore, the presented control algorithm also ensures the fixed-time reachability of the sliding surface, while avoiding the singularity problem. Finally, the effectiveness of the proposed observers and control protocol is further verified by a numerical simulation.  相似文献   

16.
The design of an adaptive sliding mode control (SMC) scheme is proposed in this paper for stabilizing a class of dynamic systems with matched and mismatched perturbations. Two methods for designing a novel sliding surface function are introduced first. By utilizing a pseudocontrol input in the sliding surface function, one cannot only suppress the mismatched perturbations in the sliding mode, but also obtain the property of asymptotical stability. Then a sliding mode controller is designed to drive the controlled systems to the designated sliding surface in a finite time. Adaptive mechanism is also embedded in the controller as well as in the sliding surface function designed from the second method to overcome the perturbations, so that the informations of upper bound of perturbations are not required. An application of flight control and experimental results of controlling a servomotor are also given for demonstrating the applicability of the proposed control scheme.  相似文献   

17.
Gas flow has fractional order dynamics; therefore, it is reasonable to assume that the pneumatic systems with a proportional valve to regulate gas flow have fractional order dynamics as well. There is a hypothesis that the fractional order control has better control performance for this inherent fractional order system, although the model used for fractional controller design is integer order. To test this hypothesis, a fractional order sliding mode controller is proposed to control the pneumatic position servo system, which is based on the exponential reaching law. In this method, the fractional order derivative is introduced into the sliding mode surface. The stability of the controller is proven using Lyapunov theorem. Since the pressure sensor is not required, the control system configuration is simple and inexpensive. The experimental results presented indicate the proposed method has better control performance than the fractional order proportional integral derivative (FPID) controller and some conventional integral order control methods. Points to be noticed here are that the fractional order sliding mode control is superior to the integral order sliding mode counterpart, and the FPID is superior to the corresponding integral order PID, both with optimal parameters. Among all the methods compared, the proposed method achieves the highest tracking accuracy. Moreover, the proposed controller has less chattering in the manipulated variable, the energy consumption of the controller is therefore substantially reduced.  相似文献   

18.
This paper is concerned with an event-triggered sliding mode control (SMC) scheme for trajectory tracking in autonomous surface vehicles (ASVs). First, an event-triggered variable that consists of tracking error, desired trajectory and exogenous input of the reference system is introduced to decrease the magnitude of the robust SMC term. Then, the reaching conditions of the designed event-triggered sliding mode are established. Moreover, the event-triggered induced errors that exist in the rotation matrix of the ASV are analyzed. In the presence of parameter uncertainties and external disturbances, the proposed event-triggered SMC scheme can ensure the control accuracy and low-frequency actuator updates. Then both actuator wear and energy consumption of the actuators can be reduced comparing with the traditional time-triggered controller. The proposed controller not only guarantees uniform ultimate boundedness of the tracking error but also ensures non-accumulation of inter-execution times. The results are illustrated through simulation examples.  相似文献   

19.
High-frequency control switching, chattering, limits the practical application of sliding mode controllers. This paper proposes an enhanced reaching law, viz., Fractional Power Rate Reaching Law (FPRRL), for the design of sliding mode controllers to mitigate the chattering problem. Controller gains are selected to accommodate variations in switching function dynamically to prevent over-actuation near the sliding surface, which is the primary reason for chattering. Chattering mitigation is achieved without compromising other attributes of sliding mode control. Performance enhancements in the attributes, viz., reaching time, robustness, and reduced chattering magnitude have been established through the methodical analysis of the new reaching law. The proposed control strategy is then bench-marked with the state of the art reaching law methods through simulations by considering a twin-rotor MIMO system control problem.  相似文献   

20.
Suppression of the vibration caused by environmental loads in marine risers is critical to prevent irreparable damages. This paper addresses this issue by proposing a novel boundary control for a flexible riser connected to a vessel at its top. In this regard, initially, a sliding mode observer (SMO)-based disturbance estimator is constructed to estimate the uncertainty of the vessel's dynamics. Next, using backstepping, a suitable virtual control along with the respective error dynamics are derived. A fractional-order error surface is defined to achieve Mittag-Leffler convergence for the control error variable. A second-order sliding mode (SOSM) control law is used to stabilize this error surface. The boundedness and ultimate boundedness of the riser's deflection under the proposed boundary control is shown by Lyapunov analysis. Comparative simulations demonstrate the robust vibration suppression performance of the proposed controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号