首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper aims at the sampled-data control problem for a class of pure-feedback nonlinear systems. A fuzzy state observer is constructed to evaluate the unavailable states. In this process, fuzzy logic systems are applied to approximate the uncertain nonlinear functions. Based on the new designed state observer, a sampled-data control scheme for the pure-feedback nonlinear systems is proposed. The designed sampled-data controller ensures the boundedness of the nonlinear systems. Finally, two numerical examples are used to demonstrate that the proposed method is efficient.  相似文献   

2.
This paper addresses the problem of synchronization control of neutral-type neural networks with sampled-data, where sampled data will be over a communication network before received by controller. Generally, the communication network is with a bandwidth-limited communication channel. To reduce network burden, an event-triggered scheme is designed between the sampler and communication network. A weak synchronization conditions are derived by using our proposed integral inequality. Finally, a numerical example is given to illustrate the effectiveness and advantage of the proposed results.  相似文献   

3.
This paper studies the global sampled-data output feedback stabilization problem for a class of stochastic nonlinear systems. The considered system is in non-strict feedback form with unknown time-varying delay. A state observer is introduced to estimate the unmeasured states. With the help of the backstepping method, a linear sampled-data output feedback controller is constructed. By choosing an appropriate Lyapunov–Krasoviskii functional and an allowable sampling period, it is shown that the stochastic system can be globally asymptotically stabilized in the mean square sense under the developed control scheme. Finally, two examples are presented to verify the effectiveness of the designed control scheme.  相似文献   

4.
This paper studies the extended dissipativity (ED) issue for T-S fuzzy systems (TSFSs) via reliable memory control scheme and aperiodic sampled-data (ASD) method. First, considering the random variation of sampling interval and the time delays (TDs) of sampling signal transmission in the communication network, a reliable aperiodic memory sampled-data control (RAMSDC) strategy is proposed. Then, the developed delay-dependent Lyapunov-Krasovskii functional (LKF) with some two-sided looped-functional (TSLF) terms is constructed to fully utilize sampled state information. The introduced free matrices in the TSLF need not to be positive definite, which reduces the conservativeness of the obtained results. Next, a sufficient condition is given to ensure the ED, and the controller gain matrix is obtained by means of linear matrix inequality (LMI) technique. At last, the effectiveness of theoretical results in practical application is verified by the use of a truck-trailer model.  相似文献   

5.
This paper focuses on an output feedback stabilization problem for a class of switched nonlinear systems in non-strict feedback form under asynchronous switching via sampled-data control. Since the output of the considered systems is measurable only at the sampling instants, an observer is designed with a tunable scaling gain to estimate the state, and then a sampled-data controller is constructed with the sampled estimated state. As a distinctive feature, a merging virtual switching signal is introduced to describe the asynchronous switching generated by detecting the activation of the subsystem. By choosing an appropriate Lyapunov function, it is proved that the constructed controller with dwell time constraint can globally stabilize the considered systems under asynchronous switching. Finally, the effectiveness of the proposed method is illustrated by two examples.  相似文献   

6.
This paper presents a novel event-triggered H static output-feedback control for active vehicle suspension systems with network-induced delays. The proposed control schema introduces an event-triggering mechanism in the suspension system such that the communication resources can be significantly saved. By applying some improved slack inequalities and an augmented Lyapunov–Krasovskii functional (LKF), a new design condition expressed in the form of linear matrix inequalities (LMIs) is developed to derive the desired event-triggered controller. The obtained algorithm is then employed to solve the static output-feedback control gain. Compared with the traditional sampled-data H control scheme, the proposed controller is able to provide an enhanced disturbance attenuation level while saving the control cost. Finally, comparative simulation results are provided to show the performance of the proposed event-triggered controller.  相似文献   

7.
The adaptive asymptotic tracking control problem for a class of stochastic non-strict-feedback switched nonlinear systems is addressed in this paper. For the unknown continuous functions, some neural networks are used to approximate them online, and the dynamic surface control (DSC) technique is employed to develop the novel adaptive neural control scheme with the nonlinear filter. The proposed controller ensures that all the closed-loop signals remain semiglobally bounded in probability, at the same time, the output signal asymptotically tracks the desired signal in probability. Finally, a simulation is made to examine the effectiveness of the proposed control scheme.  相似文献   

8.
In this work, a sampled-data control problem for neural-network-based systems with an optimal guaranteed cost is investigated. By constructing suitable time-dependent functionals and utilizing an improved free-matrix-based integral inequality, a sampled-data stability criterion for neural-network-based systems is derived. Based on a first result, a sampled-data controller design method for neural-network-based systems that meets the maximum sampling period and minimum guaranteed cost performance is proposed. The superiority and validity of the results will be verified by comparing with the existing results in a numerical example.  相似文献   

9.
This paper investigates the problem of stabilization for fuzzy sampled-data systems with variable sampling. A novel Lyapunov–Krasovskii functional (LKF) is introduced to the fuzzy systems. The benefit of the new approach is that the LKF develops more information about actual sampling pattern of the fuzzy sampled-data systems. In addition, some symmetric matrices involved in the LKF are not required to be positive definite. Based on a recently introduced Wirtinger-based integral inequality that has been shown to be less conservative than Jensen’s inequality, much less conservative stabilization conditions are obtained. Then, the corresponding sampled-data controller can be synthesized by solving a set of linear matrix inequalities (LMIs). Finally, an illustrative example is given to show the feasibility and effectiveness of the proposed method.  相似文献   

10.
Sampled-data control as an effective mean of digital control has shown its prominent superiority in most practical industries and a zero-order holder (ZOH) is often introduced to maintain continuity of control in the field of sampled-data control system. However, it decreases the control accuracy in a certain extent since the state will be held invariably within each sampling interval. In order to improve the control accuracy, this paper proposes a dynamic model-based control strategy instead of ZOH for a class of switched sampled-data control systems. The model, which is built by abstracting the plant knowledge, is located at the controller side. The controller is set up based on the model state and it provides control input to the switched system. A fixed sampling period is adopted, under which a hybrid-dwell time switching condition is revealed by taking into account asynchronous switching. With reasonable design of switching condition, exponential stability of the closed-loop system can be guaranteed. Finally, advantages of our proposed method are presented through a numerical example by comparing with the result of ZOH-based control.  相似文献   

11.
An evolutionary programming-based adaptive observer is presented in this paper to improve the performance of state estimation of nonlinear time-varying sampled-data systems. Also, this paper presents a novel state-space adaptive tracker together with the proposed observer and estimation schemes for nonlinear time-varying sampled-data systems having actuator failures. For the class of slowly varying nonlinear time-varying systems, the proposed methodology is able to achieve the desired fault detection and performance recovery for the originally well-designed systems, as long as the controller having the high-gain property. For practical implementation, we utilize the advantages of digital redesign methodology to convert a well-designed high-gain analog controller/observer into its corresponding low-gain digital controller/observer. Illustrative examples are given to demonstrate the effectiveness of the proposed method. The developed digitally redesigned adaptive tracker with the proposed observer and estimator is suitable for implementation by using microprocessors.  相似文献   

12.
This paper presents a sampled-data predictive control strategy for a class of uncertain continuous-time Markovian jump linear system (MJLS) with time-varying delay. The system under consideration covers MJLS with completely known jump rates and arbitrary switched linear system. The predictive formulation utilizes both off-line and on-line optimization paradigms. The feasibility of the control scheme and the stability of the closed-loop system are investigated by introducing a modified stochastic invariant ellipsoid. The conditions for the existence of a stabilizing optimal controller for the underlying system are obtained via the semi-definite programming (SDP). A numerical example is given to verify efficiency and potential of the developed approach.  相似文献   

13.
In this paper, an adaptive control strategy is proposed to address the synchronization issue for weakly damped generators under topological uncertainty. A singular perturbation analysis is then adopted for strongly damped generators and a compensation control scheme is subsequently given to maintain synchronization under topological changes. Theoretical proof is laid out for the validity of the proposed control scheme. Besides, a power sharing strategy is supplemented for strongly damped generators based on the designed controller. Finally, simulation studies are carried out to verify the effectiveness of the control strategies. Results show that synchronization can be swiftly restored even when the power grid suffers a fatal topological change. The power sharing property can be achieved under the given restriction with the proposed controller.  相似文献   

14.
This paper presents new parameterized sampled-data stabilization criteria using affine transformed membership functions for T-S fuzzy systems. To deal with the sampled control input having aperiodic sampling intervals, the proposed method adopts new looped functionals, and employs a modified free weighting matrix inequality. A relaxed condition for the controller design is derived by formulating the constraint conditions of the membership functions in the proposed controller with affinely matched weighting parameter vectors. Based on a newly devised lemma for handling affinely matched vectors, the stabilization and guaranteed cost performance criteria are given in terms of linear matrix inequalities (LMIs). The superiority of the presented method is demonstrated via significantly improved results in numerical examples.  相似文献   

15.
This paper considers the synchronization problem of coupled chaotic neural networks with time delay in the leakage term and parametric uncertainties using sampled-data control. Motivated by the achievements from both the stability of neural networks with time delay in the leakage term and the synchronization issue of coupled chaotic neural networks with parametric uncertainties, Lyapunov stability theory combining with linear matrix inequalities is employed to derive sufficient criteria ensuring the coupled chaotic neural networks to be completely synchronous. This paper presents an illustrative example and uses simulated results of this example to show the feasibility and effectiveness of the proposed sampled-data controller.  相似文献   

16.
This paper deals with the load frequency control problem of multi-area power system with doubly-fed-induction-generator-based wind farm. An area-based event-triggered (ET) sliding mode control scheme is proposed to restore the nominal frequency by transmitting less information. The main feature of area-based ET scheme is that each area will transmit its states information to the controller independently via its own triggering mechanism. By flexibly selecting triggering thresholds, the area-based ET scheme can meet the unbalanced network resources among different areas. Meanwhile, the designed sliding mode controller can effectively suppress the fast fluctuation resulting from load and wind generation to achieve frequency restoration and maintain the tie-line power at its scheduled value. The optimization algorithm on the sufficient conditions is given. Finally, the proposed control scheme is illustrated via a three-area power system and IEEE 39-bus system.  相似文献   

17.
This paper proposes an active resilient control strategy for singular networked control systems with external disturbances and missing data scenario based on sampled-data scheme. To characterize the missing data scenario, a stochastic variable satisfying Bernoulli distributed white sequence is introduced. Based on this scenario, in this paper, two different models are proposed. For both the models, by using Lyapunov–Krasovskii functional approach, which fully uses the available information about the actual sampling pattern, some sufficient conditions in terms of linear matrix inequalities (LMIs) are separately obtained to guarantee that the resulting closed-loop system is admissible and strictly dissipative with a prescribed performance index. In particular, Jensen’s and Wirtinger based integral inequalities are employed to simplify the integral terms which appeared in the derivation of stabilization results. Then, if the obtained LMIs are feasible, the corresponding parameters of the designed resilient sampled-data controller are determined. Finally, two numerical examples are presented to demonstrate the effectiveness of the proposed control design technique.  相似文献   

18.
The synchronization for a class of switched uncertain neural networks (NNs) with mixed delays and sampled-data control is researched in this paper. When a switching signal occurs in a sampling interval, the controller cannot switch until the next sampling instant. There is a mismatch between the system and the controller. Thus, we devise the control strategy to guarantee that the switched NNs can be synchronized. The proposed Lyapunov-Krasovskii functional (LKF) can make full use of system information. By use of an improved integral inequality, some sufficient stability conditions formed by linear matrix inequalities (LMIs) are derived for the synchronization of switched NNs. Average dwell time (ADT) is obtained as a form of inequality that includes the sampling interval. At last, the feasibility of the proposed method is proved by some numerical examples.  相似文献   

19.
In this paper, several resultful control schemes based on data quantization are proposed for complex-valued memristive neural networks (CVMNNs). Firstly, considering the finite communication resources and the interference of failures to the system, a state quantized sampled-data controller (SQSDC) is designed for CVMNNs. Next, taking the interference of gain fluctuations into account, a non-fragile sampled-data control (SDC) law is proposed for CVMNNs in the framework of data quantification. In order to full capture more inner sampling information, a newly Lyapunov-Krasovskii function (LKF) is constructed on the basis of the proposed triple integral inequality. After that, in the framework of taking full advantage of the property of Bessel-Legendre inequality, a time-dependent discontinuous LKF (TDDLKF) is proposed for CVMNNs with SQSDC. Based on the useful LKF, several stability criteria are established. Finally, the numerical simulations are provided to substantiate the validity and less conservatism of the proposed schemes.  相似文献   

20.
An improved memory-event-triggered control for networked control systems   总被引:1,自引:0,他引:1  
In this paper, the H control problem is investigated for a class of networked control systems with network-induced delay. A memory event-triggered scheme (METS) is proposed to reduce the redundant packet transmission in the network channel. Different from the normal event-triggered scheme (ETS), some recent released packets are stored at the event generator and controller sides, which are utilized for the first time to generate the triggered events and design the memory-based controller. The proposed METS has the following two merits. (1) The information of certain recent released signals are first utilized, which helps to improve the triggering instants at the crest or trough of the responses. (2) A state-dependent time-varying threshold parameter is designed, which can adjust the packet transmission rate according to the information of the state. Based on the proposed METS, a memory event-triggered controller is designed, the controller feedback gains and triggering parameters can be co-designed by solving a set of linear matrix inequalities. Finally, an example is given to illustrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号