首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目前 ,一元二次方程整数根问题已成为各级各类竞赛不可缺少的试题 .它解法灵活、技巧性强 ,常使学生颇感棘手 ,本文仅以竞赛题为例介绍一些常用的解题思路和方法 .一、利用整数的性质例 1  (希望杯数学竞赛题 )已知 p为质数 ,且方程x2 + px - 44 4p =0有两个整数根 ,求 p的值 (   )解 :设 m ,n为原方程的两个根 ,则m + n =- pmn =- 44 4p =- 2 2× 3× 37p∵ p为质数 ,且 m n =- 2 2× 3× 37p,则 p必为 m或 n的约数 ,又 m + n =- p,则 p同为 m、n的约数 .又∵ m n =- 2 2× 3× 37p,∴ p的可能取值为 2 ,3,37.将 p =2 ,3,37分别代入原方…  相似文献   

2.
众所周知 ,“根与系数的关系”的应用之一是构造方程 ,但它不是构造方程的惟一方法 ,本文举例介绍构造方程的另两种方法 ,供同学们参考。例 1 求作一方程 ,使它的各根分别是方程x2 - 3x + 2 =0的各根的 3倍。解法一 :设所求方程的未知数为 y。由题意 ,得 y =3x ,即x =y3,代入原方程 ,得 ( y3) 2 - 3·y3+ 2 =0整理 ,得 y2 - 9y + 1 8=0 .解法二 :设所求方程为 y2 + py + q =0 ,由题意 ,得 y =3x ,∴ ( 3x) 2 + 3px + q =0 ,即 9x2 + 3px + q =0 .此方程与原方程是同解方程 ,∴19=- 33p =2q,∴p =- 9,q =1 8.则所求作方程为 y2 - 9y + 1 8=0…  相似文献   

3.
解答某些与一元二次方程有关的问题时,要注意把根代人方程中.例1如果x=1是已知方程x~2+kx+k-5=0的一个根,那么,k的值等于().解由x=1是已知方程的根,那么1+k+k-5=0,∴k=2.例2若a是一元二次方程x~2-3x+m=0的一个根,-a是一元二次方程x~2+3x-m=0的一个根,那么a的值等于().A.1或2 B.0或-3 C.-1或-2 D.0或3  相似文献   

4.
一、整体换元法例1计算20+142√3√+20-142√3√.解:设20+142√3√+20-142√3√=x,两边立方,得20+142√+20-142√+3202-(142√)3√2(20+142√3√+20-142√√)=x3,∴x3-6x-40=0,∴(x-4)(x2+4x+10)=0.∵x2+4x+10=(x+2)2+6>0,∴x-4=0,∴x=4.故20+142√3√+20-142√3√=4.二、局部换元法例2解方程5x2+x-x5x2-1√-2=0.解:设y=5x2-1√,则原方程可化为y2+x-xy-1=0,∴(y-1)(y-x+1)=0,解得y=1或y=x-1.当y=1时,5x2-1√=1,解得x1,2=±10√5;当y=x-1时,5x2-1√=x-1,解得x3=12,x4=-1,经检验,x3=12,x4=-1是增根.故原方程的根是x1,2=±10√5.三、常值换元法…  相似文献   

5.
已知一元二次方程有整数根 ,求方程中参数的值 ,这类问题类型较多 ,解法不一 .本文介绍几种常见方法供参考 .1 求根法当一元二次方程的判别式Δ是完全平方式或完全平方数时 ,可利用因式分解法 ,先求出方程两根 ,再求参数 .例 1 已知关于 x的一元二次方程 a2 x2 - (3a2- 8a) x +2 a2 - 1 3a +1 5 =0有整数根 ,求整数 a的值 .分析 因为Δ =(3a2 - 8a2 ) - 4 a2 (2 a2 - 1 3a+1 5) =(a2 +2 a) 2是完全平方式 ,故可用因式分解法求出方程根 .解 解方程得 x1 =2 - 3a,x2 =1 - 5a.因为方程有整数根 ,所以 x1 或 x2 是整数 .因此 ,a是 3或 5的因…  相似文献   

6.
一、求根法用分解因式法表示出一元二次方程的两个解,再利用约数的特性及根据题意解决此类问题·例1已知方程a2x2-(4a2-5a)x+3a2-9a+6=0(a为非负整数)至少有一个整数根,那么a=·解:原方程变形,得[ax-(3a-3)][ax-(a-2)]=0,所以ax=3a-3或ax=a-2·因为a为非负整数,所以x1=3aa-3=3-3a,x2=a-a2=1-2a·当x1为整数时a为3的正约数,所以a=1或3;当x2为整数时a为2的正约数,所以a=1或2·所以a=1或2或3·二、判别式法当一元二次方程有整数根时,首先必须确定整系数和判别式必为完全平方数,然后进一步验证·例2设m为自然数,且1相似文献   

7.
一元二次方程根的判别式主要用于判断方程根的情况,灵活运用它还可以解决其它问题.一、用于求值例1如果代数式(2m-1)x2+2(m+1)x+4是完全平方式,求m的值.解:∵代数式(2m-1)x2+2(m+1)x+4是完全平方式,∴(2m-1)x2+2(m+1)x+4=0有两个相等的实数根.∴△=〔2(m+1)〕2-4×4(2m-1)=0.解之,得m=1或m=5.二、用于求最值例2已知a、b都是正实数,且a3+b3=2,求a+b的最大值.解:设a+b=k,则b=k-a,将b=k-a代入a3+b3=2,并以a为主元整理,得3ka2-3k2a+k3-2=0.∵a是正实数,则关于a的方程必有实数根,∴△=(-3k2)2-12k(k3-2)≥0,解得0相似文献   

8.
误区一:最大整数解就是目标函数取最大整数值.【例1】 已知x,y满足不等式组2x-y-3>02x+3y-6<03x-5y-15<0 求x+y的最大整数解.错解:依约束条件画出可行域如下图所示由3x-5y-15=02x+3y-6=0解得x=7519y=-1219∴x+y=7519-1219=6319,∴x+y的最大整数解为3.点击:错误主要原因是把目标函数的最大整数值与最大整数解混为一谈,最大整数解是使目标函数取得最大值时的整数解,显然,此时的最大值一定是整数值.正解:于错解的前部分过程相同,∴x+y=6319=3619.∴令x+y=3则y=3-x代入可行域解得3相似文献   

9.
一元二次方程是初中数学的重要内容,也是中考的热点.下面以2013年中考题为例,说明一元二次方程中常用的数学思想. 一、整体思想 例1 (2013年黔西南卷)已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是____. 解析:∵x=1是一元二次方程x2+ax+b=0的一个根, ∴12+a+b=0,∴a+b=-1, ∴.a2+b2+2ab=(a+b)2=(-1)2=1. 温馨小提示:本题主要考查一元二次方程解的概念,把根直接代入方程,即可求得a+b的值,然后整体代入求出代数式的值.  相似文献   

10.
一元一次方程是初中阶段最重要的基础知识之一,又是中考命题的热点.现选择几例2006年中考中的一元一次方程问题,供大家学习参考.一、已知方程的解,求方程中字母的值例1(吉林省)已知关于x的方程3a-x=x2+3的解为2,求代数式(-a)2-2a+1的值.分析:把x=2代入已知方程,a值可求,进而可求代数式的值.解:把x=2代入已知方程得3a-2=1+3,化简,得3a=6,所以a=2.把a=2代入所求代数式得(-2)2-2×2+1=4-4+1=1.练习1(广西钦州)若x=1是方程2x-a=0的解,则a=().(A)1(B)-1(C)2(D)-2二、列一元一次方程解应用题例2(陕西省)一件标价为600元的上衣,按标价8折销售仍可…  相似文献   

11.
一、由方程的定义确定参数例1若(m2-m-2)x2+mx+3=0是关于x的一元二次方程,则m的取值范围是().(A)m≠-1;(B)m≠2;(C)m≠-1且m≠2;(D)一切实数.解:由一元二次方程的定义,得m2-m-2≠0,∴(m-2)(m+1)≠0,∴m≠2且m≠-1.故选(C).二、由方程根的定义确定参数例2方程x2-12x-m=0的一个根是2,那么m的值是.解:由方程根的定义,把x=2代入方程,得22-12×2-m=0,解得m=-20.三、由方程根的情况确定参数例3已知关于x的一元二次方程(1-2k)x2-2k+1√x-1=0有两个不相等的实数根,求k的取值范围.解:∵方程有两个不相等的实数根,∴△=(-2k+1√)2-4(1-2k)×(-1)=-4k…  相似文献   

12.
新年趣题     
值此 2 0 0 3年来临之际 ,特拟一组与 2 0 0 3有关的新年趣题 ,使同学们在解题中感悟新年快乐 ,并祝大家在新的一年里取得优异成绩 .1.已知 a=2 0 0 22 0 0 3 -1,求 12 a3 -a2 -10 0 1a+ 1的值 .2 .设α、β是方程 2 0 0 1x2 + 2 0 0 2 x -2 0 0 3 =0的两根 ,若 Sn =αn +βn.求 2 0 0 1S2 0 0 3 +2 0 0 2 S2 0 0 2 -2 0 0 3 S2 0 0 1 + 2 0 0 3的值 .3 .方程 (2 0 0 3 x) 2 -2 0 0 2× 2 0 0 4x-1=0的较大根为 p ,较小根为α,方程 x2 + 2 0 0 2 x -2 0 0 3 =0的较小根为 q,求 p-q-2 0 0 3 αq的值 .4.已知 a≠ b,a2 0 0 3× 23 -a2 0 0 3…  相似文献   

13.
在解题时 ,不少学生常常忽略某个方面的条件或遗漏条件的某个方面而造成漏解。究其原因 ,除平时缺少周密的思维训练外 ,主要是对问题的题设 ,尤其是隐含条件缺乏全面、细致的分析。例 1.如果关于 x的方程 x2 +px+1=0的一实数根的倒数恰是它本身 ,那么 P的值是 (   )A.1;   B.± 1;   C.2 ;   D.± 2。错解 :由习惯思维 ,学生自然而然地想到了“1”的倒数是它本身 ,将其代入 ,求出 p=- 2。评析 :倒数是其本身的数除“1”外 ,还有“- 1”,正确的解法应该是 :将“± 1”分别代入方程求出 p=± 2。故应选 D。例 2 .已知 xy=3,那么 x …  相似文献   

14.
△ =b2 - 4ac叫做一元二次方程 ax2 + bx+ c=0(a≠ 0 )的根的判别式。灵活应用它 ,不仅可以解答一些与一元二次方程有关的问题 ,一些非一元二次方程问题也可获得巧妙解答。一、与一元二次方程有关的问题例 1 若方程 x2 - (a- 3) x- 3a- b2 =0有两个等根 ,则方程 x2 + ax+ b=0的两根分别是 (   )(A) 0 ,3;(B) 0 ,- 3;(C) 1,4 ;(D) 1。解 :由方程 x2 - (a- 3) x- 3a- b2 =0有两个等根 ,∴△ =(a- 3) 2 - 4(- 3a- b2 ) - 0 ,∴ (a+ 3) 2 + 4 b2 =0。∵ (a+ 3) 2≥ 0 ,4 b2≥ 0 ,∴ a=- 3,b=0。这时 ,要求的方程即为 x2 - 3x=0∴ x1=0 ,x2 …  相似文献   

15.
例 1 已知x >0 ,求函数 y =2x2 +3x的值域 .错解 ∵y=2x2 +3x=2x2 +1x +2x≥ 33 2x2 ·1x· 3x=3 3 6.故所求函数的值域为 [3 3 6,+∞ ) .剖析 由于方程 2x2 =1x =2x 无解 ,即等号不能成立 ,故求解错误 .正解 y=2x2 +3x=2x2 +32x+32x≥ 33 2x2 · 32x· 32x=323 3 6.故所求函数值域为 323 3 6,+∞ .例 2 已知 1≤a+b≤ 5 ,-1≤a-b≤ 3 ,求 3a -2b的取值范围 .错解 ∵ 1≤a+b≤ 5 ,①-1≤a-b≤ 3 ,②∴ 0 ≤ (a +b) +(a-b)≤ 8,∴ 0≤a≤ 4,③∴ 0 ≤ 3a≤ 12 ,又∵ 1≤a+b≤ 5 ,   -3≤-a +b≤ 1,∴ -2 ≤ (a +b) +( -a+b)≤ 6,∴ -…  相似文献   

16.
一、化简代入技巧例1先化简,再求值。ba-b·a3+ab2-2a2bb3÷b2-a2ab+b2,其中a=23,b=-3。解:待求式=ba-b·a(a-b)2b3·b(b-a)=-ab=-23÷(-3)=29。二、求值代入技巧例2已知a(a-2)-(a2-2b)=-4,则a2+b22-ab=。解:∵a(a-2)-(a2-2b)=-4,∴a2-2a-a2+2b=-4,∴-2(a-b)=-4,a-b=2,故a2+b22-ab=(a-b)22=222=2。三、换元代入技巧例3如果x:y:z=1:3:5,那么x+3y-zx-3y+z=。23,则。解:设x=k,y=3k,z=5k,则x+3y-zx-3y+z=k+9k-5kk-9k+5k=5k-3k=-53。四、和积代入技巧例4已知x=樤3+樤2,y=樤3-樤2,试求2xyx2-y2+xx+y-yy-x的值。解:由题设得,x+y=2樤3,x-y=2樤2,xy=1…  相似文献   

17.
在中考复习中,注意某些公式、法则的适用范围以及它的限制条件,是很有必要的.在本文中,我们一起探讨数学中考中容易失分的几个问题.希望能引起同学们的重视,避免摔倒在别人多次绊倒的地方.一、忽视根的判别式例1设x1,x2是方程2x2-4mx+2m2+3m-2=0的两个根.当m为何值时,x12+x22有最小值?求出这个最小值.错解:已知方程的两根是x1,x2,∴x1+x2=2m,x1·x2=2m2+3m-22 .∴x12+x22=(x1+x2)2-2x1x2=(2m)2-2×2m2+3m-22=2m2-3m+2=2(m-34)2+78.(1)∴当m=34时,x12+x22有最小值78.分析:∵x1,x2是原方程的两实根,∴Δ=(-4m)2-4×2(2m2+3m-2)≥0.解得:m≤23.…  相似文献   

18.
一元二次方程ax2 +bx +c =0(a≠0)根的判别式是b2-4ac,通常用符号"△"来表示.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;反之也成立.判别式不仅用来判断一元二次方程根的情况,也可以解决其他数学问题.一、求字母的值 例1 (2012年广州卷)已知关于x的一元二次方程x2-2√3x+k=0有两个相等的实数根,则k的值为____. 解:∵方程x2-2√3x+k=0有两个相等的实数根,∴△=(-2√3)2-4k=0. ∴12-4k=0,解得k=3.故填3. 温馨小提示:这是判别式的典型应用.我们要熟记判别式值的正负与根的个数之间的关系.  相似文献   

19.
关于一元二次方程的根的代数式求值问题,有时只用根与系数的关系求解,计算会很繁难,甚至无法解答。而借助方程根的定义,则可迎刃而解。 一、直接应用方程的根的定义,采用整体代入法求值 例1 已知a是方程x~2-3x+1=0的根,试求代数式(a~3-3a~2-2a)/(a~2+1)的值。  相似文献   

20.
在解与实数相关的问题时,常常用到一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac,这里谈谈判别式的具体应用中的一些错解。一、待定系数的求值问题例1.已知关于x的方程x2-mx-n=0的两根的积比两根之和的2倍小12,并且两根的平方和为22,求m,n的值。错解:设两根分别为x1、x2则x1+x2=m,x1x2=-n依题意,得2(x1+x2)-x1x2=12x21+x22=2 2即2m+n=12m2+2n=2 2解得m1=7n1=-272 或m2=-3n2=132 分析:∵方程有两根,∴△≥0即m2+4n≥0,但m1=7,n1=-272时,△<0。不合题意,应舍去。当m2=-3,n2=132时△>0∴m=-3,n=132例2.已知一元二次方…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号