首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中等数学》2 0 0 2年第 2期数学奥林匹克问题高 1 1 0 :设a、b、c∈R+ .试证 :ab2 + bc2 + ca2 ≥ 1a+ 1b+ 1c.①本文推广不等式① ,得到如下命题 设x1,x2 ,… ,xn ∈R+ ,n >1 ,αβ>0 .则xα1xβ2+ xα2xβ3+… + xαn - 1xβn+ xαnxβ1≥xα - β1+xα- β2 +… +xα - βn ,②等号当且仅当x1=x2 =… =xn 时成立 .证明 :(用数学归纳法 )( 1 )当n =2时 ,式②左 -右 =xα1xβ2+ xα2xβ1-xα - β1-xα- β2=(xα1-xα2 ) (xβ1-xβ2 )xβ1xβ2.根据x1>0 ,x2 >0 ,αβ >0及幂函数…  相似文献   

2.
构造函数法是证不等式的一种重要方法 ,本文谈谈构造函数法证不等式的几种思考途径 .途径一 利用函数的单调性构造一个函数 ,使原不等式 (或经等价变形后 )的左右两边是这个函数在某一个单调区间上的两个值 ,就可以利用函数的单调性证明不等式 .例 1 已知a、b、c∈R ,且a b c =1,求证 :abc 1abc≥ 2 712 7.证明 令 f(x) =x 1x ,取 0 <x1<x2 <1,则f(x2 ) - f(x1) =(x2 -x1) 1x2 - 1x1=(x2 -x1) 1- 1x1x2 <0 ,所以 f(x)在 (0 ,1)上为减函数 .又 0 <abc≤ a b c33=12 7,∴f(abc) ≥ f 12 …  相似文献   

3.
例 1 已知x ,y ,z>0 ,证明 :z2 -x2x + y + x2 -y2y +z + y2 -z2z +x ≥ 0 .证明 设x+ y =a ,y +z=b ,z +x=c ,则z-x =b-a ,x -y =c-b ,y-z=a -c,a ,b ,c>0 .于是原式等价于bca + cab + abc ≥a +b+c .由bca + cab ≥ 2c等得证 .例 2 在 ABC中 ,a +b +c=2s ,a ,b,c为三边 ,则abc≥ 8(s-a) (s -b) (s-c) .证明 设s -a =α ,s-b =β ,s-c =γ ,则α ,β ,γ >0 ,α+ β =c,β +γ=a ,α +γ=b.于是原式等价于(α + β) (β+γ) (γ +α)≥ 8αβ…  相似文献   

4.
构造法是一种创造性的数学方法 ,它通过在条件和结论之间建立中转站 ,使条件迅速向结论转化 ,不但可以培养人的创造性思维 ,而且更能让人领悟到数学的无穷乐趣和魅力 .这里略举几例 :例 1 已知a ,b ,c∈R ,a +b+c =m ,a2 +b2 +c2 =m22 (m >0 ) ,求证 :0 ≤a≤2m3 .分析 此题关键在于利用已知条件 ,建立a的不等式 ,解得a的最大值 .这里可以消去c得到b的一元二次方程 ,再利用b∈R和Δ≥ 0 ,可以得到a的不等式 ,从而得证 .若构造关于b、c的二次函数 ,则更妙 .解 令f(x) =(x-b) 2 +(x-c) 2 ,则f(x) =2x2 -2…  相似文献   

5.
定理 二次函数 y =ax2 bx c的值域是[0 , ∞ )的充要条件是a>0且b2 - 4ac=0 .证明 因为 y =ax2 bx c =a(x b2a) 2 4ac-b24a ,x∈R ,所以二次函数y=ax2 bx c的值域是 [0 , ∞ ) y的最小值是 0 ,无最大值 a>0且b2 - 4ac=0 .下面举例说明定理的应用 .例 1 已知 f(x) =2x2 bx cx2 1(b <0 )的值域为[1,3] ,求实数b,c的值 .解 f(x)的定义域为R .由 1≤2x2 bx cx2 1≤ 3,得x2 bx c- 1≥0且x2 -bx 3-c≥ 0 .所以 f(x)的值域为 [1,3] y1=x2 bx c- 1和 …  相似文献   

6.
在闭区间上的二次函数的绝对值不等式的证明有一个通法 :将二次函数的系数用闭区间上的三个函数值 (一般用区间端点和中点的函数值 )来表示 ,然后借助于绝对值不等式来解决 .例 1 设a、b、c∈R ,f(x) =ax2 +bx +c(a≠ 0 ) .若 | f( 0 ) |≤ 1,|f( 1) |≤ 1,|f( - 1) |≤ 1,试证 :对任何x∈ [- 1,1] ,都有 |f(x) |≤ 54 .证明 :因f( 0 ) =c,f( 1) =a +b+c,f( - 1) =a-b +c,故解得a =f( 1) + f( - 1)2 - f( 0 ) ,b =f( 1) - f( - 1)2 ,c=f( 0 ) .∵  |x|≤ 1∴  | f(x) | =|ax2 +bx +c|=f( …  相似文献   

7.
下面,通过一些具体例子说明函数思想在解题中的运用.  一、比较大小例1 试比较|a+b|1+|a+b|与|a|+|b|1+|a|+|b|的大小.解:对于函数f(x)=x1+x=1-11+x,易知当x∈(-1,+∞)时,其为增函数.而0≤|a+b|≤|a|+|b|,故|a+b|1+|a+b|≤|a|+|b|1+|a|+|b|.注:通常可以利用函数的单调性解决比较大小的问题.二、证明不等式例2 已知实数a、b、c∈(0,1),证明:不等式a(1-b)+b(1-c)+c(1-a)<1总成立.证明:欲证不等式等价于(1-b-c)a+(1-c)(b-1)<0.记f(a)=(1-b-c)a+(1-c)(b-1),故欲证原不等式成立,只需证明a∈…  相似文献   

8.
有的文献证明了对任何x∈R,f(x)>0.本文获得定理 设x∈R,则f(x)=x4 x2 x 1在x=x0=-14 3-564 56144 3-564-56144=-060582958…处,取得最小值f(x0)=516[(x0 1)2 2]=067355322…此定理可用微分法证明,同时得知x0是方程f’(x)=0的惟一实根.下面用不等式(A2 B2)(1 a2)≥(A aB)2(=|aA=B)来证明.对f(x)进行”双配方”,应用该不等式,有f(x)=(x2 12x)2 34(x 23)2 23=(x2 12x)2 (32x 33)2 23≥11 a2[x2 (12 32a)x 33a]2 23.设3a=b,13<b<3,则x2 (12 b2)x b3≥14[4b3-(12 b2)2]=(3b-1)(3-b)48>0…  相似文献   

9.
用函数方法证明不等式 ,常常能够方便地给出证明 .用函数方法证明不等式的关键是结合不等式的结构特征构造适当的函数 ,以便于利用这一函数的有关性质证明所给的不等式 .例 1 若a >b>0 ,m >0 .求证 :ab >a +mb+m.证明 令 f(x) =a+xb +x.由a>b可设a =b+c(c >0 ) ,则f(x) =b+x +cb +x =1+cb +x.当x∈ (0 ,+∞ )时 ,f(x)为减函数 .∵ m >0 ,∴ f(m) <f(0 ) .即 ab >a+mb+m.注 用函数方法证明不等式 ,往往要利用所构造函数的单调性 .例 2 设a、b、c∈R .证明 :a2 +ac+c2 +3b(a+b+…  相似文献   

10.
吴国胜 《数学教学研究》2000,(2):F003-F003,F004
定理 设α、β、γ∈R ,则有cosαsin ( β -γ) cosβsin (γ -α) cosγsin (α - β) =0 . ( 1)sinαsin ( β -γ) sinβsin (γ -α) sinγsin (α - β) =0 . ( 2 )证明 构造二元一次方程组xcosα ycosβ =cosγ ,(a)xsinα ysinβ =sinγ . (b)由 (a)、 (b)两式可得xsin(α- β) =sin(γ - β) ,(c)ysin(α- β) =sin(α -γ) . (d)  将 (a)式两边同乘sin (α - β)后 ,再将(c)、 (d)两式代入即得 ( 1) .将 (b)式两边同乘sin (…  相似文献   

11.
函数是贯穿于初等数学的一根主线 ,函数思想是数学思想方法的重要组成部分 .函数思想的实质是剔除问题的非数学特征 ,用联系变化的观点提出数学对象 ,抽象其数量特征 ,建立函数关系 .下列举例说明函数思想在解题中的重要性和广泛的应用性 .例 1 设a、b、c∈R ,且a2 ≤ 1 ,b2 ≤ 1 ,c2 ≤ 1 .求证 :ab bc ca 1≥ 0证明 :构造一次函数f(x) =(a c)x ca 1若a c=0 ,由于-1 ≤ac≤ 1 ,有ac 1≥ 0 .即f(x) ≥ 0若a c≠ 0 ,f(1 ) =a c ca 1=(1 a) (1 c) ≥ 0 .f(-1 ) =-(a c) ca 1 =(1 -a)…  相似文献   

12.
擂台题 (5 4 ) :证明或否定若a、b、c为△ABC的三边长 ,实数λ≥ 2 ,则(b+c-a) λbλ+cλ +(c+a -b) λcλ+aλ +(a +b -c) λaλ+bλ ≥ 32①引理 若m、n∈R+ ,实数 p≥ 1 ,则(m +n2 ) p≤ mp+np2 ②证明  (1 )当 p =1时 ,②式等号成立 ,(2 )当 p >1时 ,令 f(x) =xp(x >0 ) ,这时 ,f′(x) =pxp- 1,f″(x) =p(p -1 )xp - 2 >0 ,所以 f(x)是 (0 ,+∞ )上的凹函数。因为m、n∈R+ ,由琴生不等式知f(m +n2 )≤ f(m) +f(n)2 ,即有 (m +n2 ) p≤ mp+np2 ,当且仅当m =n…  相似文献   

13.
最值问题是中学数学中一个重要内容 ,其涉及面广 ,难度较大 ,求解方法灵活多样 .本文通过构造函数和曲线来解决某些最值问题 ,不仅形象直观、易于掌握 ,而且可以减少许多不必要的计算 ,达到化难为易的目的 .一、构造函数求最值1 .构造二次函数例 1 设a b c d e =8,a2 b2 c2 d2 e2 =1 6,求e的最大值 .解 :设f(x) =(x a) 2 (x b) 2 (x c) 2 (x d) 2=4x2 2 (a b c d)x a2 b2 c2 d2显然f(x) ≥ 0 ,且x2 的系数为正 ,则△ =b2 -4ac≤ 0 ,即4(a b c d) 2 -1 6(a2 b2 c2 d2 )=4( 8…  相似文献   

14.
20 0 2年高考有一道数学题为 :已知a >0 ,函数 f(x) =ax -bx2 .(1)当b >0时 ,若对任意x∈R ,都有f(x) ≤ 1,证明 :a≤ 2b ;(2 )当b >1时 ,证明 :对任意x∈ [0 ,1],|f(x)|≤ 1的充要条件是b- 1≤a≤ 2 b ;(3)当 0 <b≤ 1时 ,讨论 :对任意x∈[0 ,1],|f(x)|≤ 1的充要条件 .绝大多数考生做此题时无所适从 ,根本不知从何下手 ,参考答案给出的方法比较抽象 ,难于理解 ,笔者有一解法 ,介绍如下 :解  (1)由已知ax -bx2 ≤ 1,∴ bx2 -ax +1≥ 0 .∵ x∈R ,b >0 ,∴ Δ =a2 - 4b≤ 0 ,∴ a≤ 2 b .…  相似文献   

15.
文[1] 介绍了涉及三角形高线的不等式 :r(5R-r)R2 ≤ h2 abc h2 bca h2 cab ≤ (R r) 2R2 ①文[2 ] 在①的基础上 ,建立的如下不等式 :bch2 a cah2 b abh2 c≥ 4②文[3 ] 建立了比②更强的如下不等式 :bct2 a cat2 b abt2 c≥ 4③  本文提出如下涉及ha,hb,hc 的不等式链 :   bcr2 a≥ 2Rr = bch2 a≥ Rr 2= bct2 a≥ bcrbrc ≥4, bcm2 a④而这一不等式④只须巧用三角形中诸元素的代数变换体系f(ra,rb,rc) =f(x,y,z)简证之 .1 三角形诸元素…  相似文献   

16.
定理 若x、y、a、b均为实数 ,且a>0 ,b >0 ,那么 x2a +y2b ≥ (x+y) 2a +b (※ )等号成立当且仅当 xa= yb .证明 不等式 (bx-ay) 2 ≥ 0显然成立 ,当且仅当 xa =yb 时取等号 .从而b2 x2 - 2abxy +a2 y2 ≥0 ,所以b2 x2 +a2 y2 ≥ 2abxy .不等式两边都加上abx2 +aby2 ,得abx2 +a2 y2 +b2 x2 +aby2 ≥abx2+2abxy+aby2 ,所以 (a+b) (bx2 +ay2 ) ≥ab(x +y) 2 .因为a >0 ,b>0 ,所以 x2a +y2b ≥ (x +y) 2a+b .不等式 (※ )结构规范 ,对称和谐 ,形式…  相似文献   

17.
本刊 2 0 0 0年第 6期 ,石世昌老师的《杨学枝一个不等式猜想的证明》一文中“不妨令b c =2 ,a =x( 1≤x <2 )” ,由于 1≤x <2 ,不能包括所有满足原猜想条件的锐角三角形 ,故造成“证明”缺陷 .例如 ,设a =3 0 1 ,b=3,c=2 -3,则a >b >c,b c =2 ,b2 c2 -a2 =6 99-4 3>0 ,可见△ABC为锐角三角形 .但文章只证明了当a =x ,1≤x <2时不等式 2 (x -1 )≥ 2x2 1 -4 -x2 成立 ,而对x≥ 2没有证明 .当x =3 0 1时 ,2x2 1 -4 -x2-2 (x -1 )≈ 7 0 2 -0 99-2 3 0 1 2 >0 1 9>0 ,所以 2 (x -1 ) <2x2 1 …  相似文献   

18.
众所周知 ,若a≥b且a≤b ,则a=b .利用这一结论常能解决一些数学问题 .下面是一道 2 0 0 2年全国联赛试题 :已知 f(x)是定义在R上的函数 ,f( 1 ) =1 ,且对任意x∈R都有f(x+ 5 )≥ f(x) + 5 ,f(x+ 1 )≤ f(x) + 1 .若 g(x) =f(x) + 1 -x ,则g( 2 0 0 2 ) =.解 由 g(x) =f(x) + 1 -x ,得g(x+ 5 ) =f(x + 5 ) + 1 -x-5=f(x + 5 ) -x-4≥ f(x) + 5 -x -4=f(x) + 1 -x =g(x) ,g(x + 1 ) =f(x+ 1 ) + 1 -x -1=f(x+ 1 ) -x≤f(x) + 1 -x =g(x) .∴g(x) ≤g(x+ 5 )≤ g(x + 4)…  相似文献   

19.
二维柯西不等式 :设a、b、c、d∈R ,则有(a2 b2 ) (c2 d2 )≥ (ac bd) 2 .当且仅当 ac =bd 时 ,不等式取等号 .1 推证几个重要结论命题 1 椭圆 x2a2 y2b2 =1与直线Ax By C =0有公共点的充要条件是A2 a2 B2 b2 ≥C2 .证明 由柯西不等式得(Ax By) 2 =Aa· xa Bb· yb2≤A2 a2 B2 b2 x2a2 y2b2 .若 (x0 ,y0 )是已知椭圆和直线的公共点 ,则满足x20a2 y20b2 =1、Ax0 By0 C =0 ,则上述不等式左边为C2 ,右边为A2 a2 B2 b2 ,充分性得证 .若 (x ,y)是直线上…  相似文献   

20.
用构造思想解决问题具有一定的创造性和启发性。一些数学问题用构造思想作为辅助手段来解决 ,使解题变得简单、快捷。本文第举一些实例对构造思想解题做一些探讨。一、构造函数解题构造函数法是运用函数思想 ,对问题进行观察、分析 ,构造也与问题有一定联系的函数 ,利用函数的知识来解决问题的一种方法。1、构造函数证明不等式构造二次函数模型F(x) =(a1 x -b1 ) 2 +(a2 x -b2 ) 2 +… +(anx -bn) 2 考虑到F(x)≥ 0 ,有△≤ 0 ,即 (a1 b1 +a2 b2+… +anbn) 2 ≤ (a12 +a22 +… +an2 )·(b12 +b22 +… +bn2 )…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号